

68HC12 Training Lab
Student Exercise Book

Date: 13 September, 2000
Document Revision:1.01

BiPOM Electronics
 11246 South Post Oak #205, Houston, Texas 77035
 Telephone: (713) 661- 4214 Fax: (713) 661- 4201
 E-mail: info@bipom.com
 Web: www.bipom.com

mailto:info@bipom.com
http://www.bipom.com

 1 year .

Page 2

© 1999-2000 by BiPOM Electronics. All rights reserved.

68HC12 Training Lab Student Exercise Book. No part of this work may be reproduced in any
manner without written permission of BiPOM Electronics.

All trademarked names in this manual are the property of respective owners.

WARRANTY:

BiPOM Electronics warrants 68HC12 Training Kit for a period of If the Kit becomes
defective during this period, BiPOM Electronics will at its option, replace or repair the Kit. This
warranty is voided if the product is subjected to physical abuse or operated outside stated electrical
limits. BiPOM Electronics will not be responsible for damage to any external devices connected to
the Kit. BiPOM Electronics disclaims all warranties express or implied warranties of merchantability
and fitness for a particular purpose. In no event shall BiPOM Electronics be liable for any indirect,
special, incidental or consequential damages in connection with or arising from the use of this
product. BiPOM’s liability is limited to the purchase price of this product.

Page 3

TABLE OF CONTENTS

INTRODUCTION 4

LAB1 8

LAB2 14

LAB3 16

LAB4 20

LAB5 22

Page 4

Introduction

The purpose of the 68HC12 Training Lab is to familiarize the student with developing
practical applications for the Motorola 68HC12 series of micro-controllers. 68HC12 is one
of the most popular micro-controllers on the market with applications ranging from
industrial, medical, home automation to automotive.

The 68HC12 Training Kit consists of the following components:

• Motorola M68EVB912B32 Micro-controller Board (Training Board)
• Micro-IDE Integrated Development Environment
• 68HC12 Assembler
• (Optional) Micro C Compiler and linker for the 68HC12
• Serial Cable

The following external items are required for each training kit station:

• IBM Compatible Personal Computer (PC) running Windows 95/98/NT 4.0 or 2000.

(68HC12 Training Kit will not work with DOS, Windows 3.1 or lower).
Minimum 16MB memory and 10 MB of available hard disk space.
One available RS232 Serial port.

• 5-Volt regulated power supply.

Figure 1 shows how all the components are connected together.

Page 5

Figure 1

RS232 Serial Cable

Micro-IDE

M68EVB912B32

+5V
GND

5-Volt Power Supply

PC

Page 6

Each student or group needs to log on to Windows before using the 68HC12 Training Kit.
Enter the user name and password that your instructor gave you before the Lab. Make sure
to log out at the end of the Lab. Do not share your username or password with anybody.

All programs are written as Assembly Language Program files which have the extension
.ASM but they are plain text files. Assembly Language Program files are created using
Micro-IDE Integrated Development Environment for Windows.

You can edit and save programs and download to the Training Board using Micro-IDE.
Creating programs and running them on the Training Board consists of the following steps:

1. Edit an existing or create a new program using Micro-IDE Program Editor.

2. Assemble the program using Micro-IDE Build Toolkit

3. Download the program to the Training Board using Micro-IDE Serial Loader.

4. Run and debug the program on the Training Board using Micro-IDE Terminal Window.

Figure 2 illustrates these steps.

The 68HC12 micro-controller on the Training Board is factory programmed with a
monitor/debugger environment called D-Bug12. You can send commands and run
programs on the 68HC12 using D-Bug12 features. D-Bug12 communicates with the PC
through Micro-IDE’s Terminal Window.

Refer the M68EVB912B32 Evaluation Board User’s Manual to get familiar with the Training
Board and the D-Bug12 monitor commands.

Page 7

Figure 2

Create 68HC12 Assembly Programs

Assemble using 68HC12 Assembler

Download to M68EVB912B32

Execute program

Page 8

LAB1

Overview

The purpose of this lab is to familiarize the student with the Motorola M68EVB912B32
micro-controller board (Training Board) and the program development environment. In this
lab, students will create a simple 68HC12 program in Assembly language, assemble the
program, download the program to the board and execute the program.

The knowledge developed in this lab will be very useful in subsequent labs when working
with the 68HC12 to develop programs. It is recommended that the student read the
M68EVB912B32 Evaluation Board User’s Manual and become familiar with the M68HC912
micro-controller and the D-Bug12 environment before starting this lab.

Instructions

Part I

Create and execute a simple 68HC12 program using the D-Bug12 environment by taking
the following steps:

1. If you have not already logged into Windows, login now by specifying your username

and password.

2. Start Micro-IDE by selecting Start, Programs and Micro-IDE. Select the Micro-IDE

option under Micro-IDE folder.

3. Check communications to the M68EVB912B32 board. Start the Terminal program by

selecting Terminal under View menu. A blank terminal screen will appear on the right
side of the Micro-IDE window. (You can resize the terminal screen by selecting the left
edge of the terminal window with the left mouse button and dragging to the right.)
Select Tools, Terminal and Connect. This will establish communications to the
M68EVB912B32.

4. Press the RESET button on the Training Board. The following message should appear

on the terminal screen.

D-Bug12 v2.0.2
Copyright 1996 - 1997 Motorola Semiconductor
For Commands type "Help"

>

Page 9

Depending on the version of your M68EVB912B32 board, this message may be slightly
different. This message indicates that you have established communications with the
board.

5. Click the left mouse button once in the Terminal window to set the input focus to that
window. Press <ENTER> once. Another ‘>’ prompt will be displayed. This means you are
now ready to enter commands.

At any point, you can obtain quick help on the available commands and their syntax by
typing HELP and then pressing Enter.

6. Press the Reset button (S1) on the M68EVB912B32 board and enter RD command to
view the current values of micro-controller registers. Make a note of these values in Table 1
below:

Register Hexadecimal Value

PC

SP

X

Y

A

B

D (A:B)

CCR

Table 1

Page 10

7. The memory map of the 64K address space of the M68HC912B32 micro-controller is
shown in Table 2:

Type Address Range

Micro-controller registers $0000 - $01FF

RAM $0800 - $0BFF

EEPROM $0D00 - $0FFF

Flash EEPROM $8000 - $FFFF

Table 2

We will use RAM at location $0800 for writing and executing simple programs. RAM
locations from $0800 to $09FF is available for user programs and data. RAM locations from
$0A00 and $0BFF are used by D-Bug12 and should not be altered by the user.

Use the ASM command to start entering your program at address $0800. Type

ASM 0800

D-Bug12 will display the current instruction at address $0800 followed by the > prompt.
Replace this current instruction by typing

LDAA #$01

and pressing Enter.

D-Bug12 will now display

0800 8601 LDAA #$01

followed by the instruction at address $0802. Note that next to 0800, 8601 is displayed; this
is the machine code equivalent of LDAA #$01.

Page 11

Now, type RTS and press Enter. D-Bug12 will display

0802 3D RTS

and the instruction at address $0803. Note that the machine code of 3D which is the
equivalent of RTS instruction is also displayed.

Exit the assembly by typing ‘.’ and pressing Enter. D-Bug12 will take you back to the >
prompt. You have now entered the following simple program

LDAA #$01
RTS

This program loads the accumulator A with a value of 1 and returns control to D-Bug12
using the RTS instruction.

8. Execute this program by typing

call 0800

and pressing Enter. This will pass control to your simple program at address 0800, execute
it and when the program completes, D-Bug12 will display the current values of the micro-
controller registers. Make a note of these values in Table 3 below:

Register Hexadecimal Value

PC

SP

X

Y

A

B

D (A:B)

CCR

Table 3

Page 12

How is Table 1 different from Table 3 ? What is the value of accumulator A after you have
executed your simple program ?

Part II

1. For the second part of the lab, first erase the RAM to make sure that the simple

program that we entered is removed. To do this, type

bf 0800 09ff ff

and press Enter. bf is the block fill command which will fill the memory locations from
$0800 to $09ff with values of $ff . Verify that the program is removed by typing

asm 0800

and pressing Enter. This should display

0800 FFFFFF LDS $FFFF >

which means that the RAM area was successfully filled with values of $ff. Type ‘.’ And
press Enter to exit the assembly mode. You should be back at the > prompt now.

2. Create a simple project using Micro-IDE. This project will contain a simple 68HC912

Assembly program. From the Micro-IDE menu, select Project and New Project. Enter
test as the project name and type c:\test for the Location. Select

ASM12 Assembler for 68HC12

3. Now create a simple Assembly file and add to the test project. To do this, select File

and New. Select ASM File and type the name test.asm. Location should already be
c:\test; if not, enter the correct Location as c:\test.

Click OK. This will create the empty assembly file test.asm.

Type the following simple 68HC912 Assembly program:

 ORG $0800

 LDAA #1
 RTS

This program loads the accumulator A with the value of 1 and returns. The origin
directive (ORG) tells the assembler that the start address of program in memory is
hexadecimal 0800. Address 0800 is mapped to RAM on the M68EVB912B32 board.

Page 13

Important Note: Enter a tab or spaces to the left of each assembly instruction;
otherwise the assembler will give Unknown Instruction errors.

4. Assemble the file by selecting Build and Build test.asm. This will assemble the test.asm

source file and create the test.hex file to be downloaded to the board. Test.hex is in
Motorola S Record format. Details of the hex format can be found in the
M68EVB912B32 Evaluation Board User’s Manual.

If test.asm is assembled without errors, the following message appears in the Output
window of Micro-IDE:

Assembling c:\test\test.asm…
First pass… Second pass… 0 error(s).

5. Download the test.hex file to M68EVB912B32 board by selecting Build and Download

test.hex.

You should see a progress indicator during download. When the download is finished,
you should see the message

>

on the Terminal screen. This means that the board has received the program
successfully. Since our test program starts at address 0800 (because of the ORG
$0800 directive), it will automatically be loaded to 0800.

At the > prompt, execute the test.asm program by typing

call 0800

What is the value of accumulator A ? What value should it be ?

Page 14

LAB2

Overview

The purpose of this lab is to familiarize the student with 68HC12 arithmetic and logic
instructions. The student will also learn the D-Bug12 Monitor’s Trace commands to trace
and debug the operation of a program.

Information

D-Bug12 Monitor on the Training Board allows tracing through the programs one instruction
at a time using the Trace command (T). Trace command also displays the 68HC12 register
contents after each instruction is executed. Before using Trace command, the Program
counter should be set to the starting address of the program to be traced. For example, to
start tracing a program at address $0800, PC command should be used to set the program
counter to $0800.

Instructions

Manually fill in the trace tables on the attached sheet titled 68HC12 Trace Tables before
starting the lab. For each instruction, indicate which registers are effected by filling in the
value of that register after executing the instruction.

Type the program shown below and save as trace.asm using Micro-IDE. Build and
download the program to the Training Board.

Page 15

* This program demonstrates various 68HC12 instructions

 ORG $0900

VAR1 FCB $A1
VAR2 FCB $FF
VAR3 FCB $69
VAR4 FCB $73
VAR5 FCB $1D
VAR6 FCB $3A
VAR7 FCB $CC
VAR8 FCB $44
VAR9 FCB $84
VAR10 FCB $00
VAR11 FCB $11

MAIN ORG $0800
 LDX VAR4
 LDD VAR10
 LDY VAR11
 STAA $07,Y
 ADDA VAR5
 ADCB #100
 XGDX
 INY
 DECB
 ABY
 ADDB VAR9
 SUBD VAR7
 NEGA
 STX VAR8
 COM VAR10
 MUL
 STD VAR6
 LDD VAR10
 LDX VAR9
 IDIV
 STD VAR4
 STX VAR2
LOOP BRA LOOP

Before using Trace command, set the Program counter to the starting address ($0800) of
trace.asm. Use PC 0800 command in the Terminal window to set the program counter.

Use the T command to trace the program. D-Bug12 will display the instruction that was
executed and the contents of all the registers. If you enter T followed by a number, D-
Bug12 will execute that number of trace commands. For example, if you enter T 3, D-
Bug12 executes 3 traces. For this lab, trace the program only one instruction at a time. Use
MD command to watch memory contents after executing an instruction.
As you trace through the program, compare the register and memory values to those in the
Trace Table that you manually filled in at the beginning of the lab.

Page 16

LAB3

Overview

The purpose of this lab is to interface the 68HC12 to the outside world by developing
programs to read digital inputs and write to digital outputs.

Information

68HC912B32 has 8 input/output ports with a total of 57 general-purpose input/output lines.
Ports are grouped in units of 8 input/output lines (except for PORT DLC which has 7
input/output lines) and are assigned a port letter. The following are the ports on the
68HC912B32:

PORT Function Alternate Function

PA0-PA7 General purpose input/output ADDR8-ADDR15/Data8-Data15

PB0-PB7 General purpose input/output ADDR0-ADDR7/Data0-Data7

PE0-PE7 General purpose input/output

(PE0 and PE1 are inputs)

LITE INTEGRATION MODULE

PAD0-PAD7 General purpose inputs Analog/Digital Converter

PDLC0-PDLC6 General purpose input/output Serial port

PP0-PP7 General purpose input/output Pulse-Width-Modulation

PS0-PS7 General purpose input/output Serial port

PT0-PT7 General purpose input/output Timer and pulse accumulator

On the Training Board, these ports can be accessed through connector blocks P2, P3, P4
and P5.

Page 17

Each port has a memory-mapped address in the 68HC12’s address space. The following
are the addresses for the ports:

Register name Description Address

PORTA Port A Data Register $0000
DDRA Port A Data Direction Register $0002

PORTB Port B Data Register $0001
DDRB Port B Data Direction Register $0003

PORTE Port E Data Register $0008
DDRE Port E Data Direction Register $0009

PORTAD Port AD Data Register $006F
PORTDLC Port DLC Data Register $00FE
DDRDLC Port DLC Data Direction Register $00FF
PORTP Port P Data Register $0056
DDRP Port P Data Direction Register $0057

PORTS Port S Data Register $00D6
DDRS Port S Data Direction Register $00D7

PORTT Port T Data Register $00AE
DDRT Port T Data Direction Register $00AF

Ports can be made input or output using the Port Direction Registers (with the exception of
PAD0-PAD7, PE0 and PE1; these lines are always inputs. After setting the port as either
an input or output, the Port value can be read from or written to using the Port Data
Register.

Instructions

Connect switches and Light emitting Diodes (LED’s) to the Training Board using the
following wiring diagram:

Page 18

PA0
PA1
PA2

PA3
PA4

VCC

1K 1K 1K 1K 1K

RED YELLOW GREEN

GND

Switch A Switch B

Figure 3

Page 19

Write a 68HC12 program to generate the following results:

Switch A Switch B Red LED Yellow LED Green LED

Open Open OFF OFF ON
Open Closed ON ON OFF

Closed Open OFF OFF ON
Closed Closed OFF OFF OFF

Build the program and download to the Training Board. Trace through the program and
watch the LED’s as you step through each instruction. Open and close Switch A and Switch
B to change the LED’s to make sure that your program is handling every case correctly.

Page 20

LAB4

Overview

The purpose of this lab is to program 68HC12’s Electrically Erasable Read Only Memory
(EEPROM).

Information

68HC12 has 768 bytes of EEPROM starting at address $0D00 and ending at address
$0FFF. EEPROM can be used for storing both programs and data. The information that is
programmed in the EEPROM stays even if the power to the Training Board is turned off.

Refer to the Section ‘EEPROM’ in Motorola M68HC12B Family Advance Information
manual for more information on the EEPROM.

Instructions

Part I

Check the contents of the EEPROM using MD command. If the EEPROM is blank, all bytes
should be $FF (all bits high).

If the EEPROM is not blank, erase the EEPROM using BULK Command.

Use MD command to verify that EEPROM is blank.

Page 21

Create a project called lab4 and type the following simple program using Micro-IDE:

 ORG $0D00

 LDAB #$55
 RTS

Save the program as lab4.asm.

Note that the entry point of the program is $0D00 (instead of $0800) which is the starting
address of the 768-byte EEPROM inside 68HC12.

Now build lab2.hex and download to the Training Board. If the program is built and
downloaded successfully, you should see the message

>

on the Terminal window.

Important Note: BULK command should be used to erase the EEPROM before each
download.

Use the MD command to display the contents of the EEPROM.

Run the program in the EEPROM using the

call 0d00

command.

Turn off the Training Board. Turn on the Training board. Connect back to the Training
Board by selecting Toolkit, Terminal and Connect. Check to see if your program is still in
the EEPROM.

Part II

Using Micro-IDE, create a project that contains a C program that prints “Hello” on the
terminal screen. Build this program. After successful build, download to the board and
execute from 0d00. Watch the terminal to see if it prints “hello” on the terminal.

Page 22

LAB5

Overview

The purpose of this lab is to program the M68HC12 to detect keystrokes from a keypad.

Information

Many keypads are wired as a matrix of rows and columns. Figure 4 shows the internal
connections of a 4 row by 3 column keypad.

Figure 4

ROW 2

ROW 3

ROW 4

COLUMN 1

COLUMN 2

COLUMN 3

ROW 1

VCC

1K 1K 1K

Page 23

Matrix connection saves on the number of connections and micro-controller port lines. For
example, a 3 row by 4 column keypad would require 13 wires (12 + ground) if each key
was individually connected to micro-controller ports. Using the matrix approach and
scanning the keypad under software control reduces the number of wires and port pins to 7
(3 rows + 4 columns).

When a key is pressed, the row for that key will be physically connected to the column for
that key. Therefore, the port input for the column will be at the same logic level as the port
output for the row.

Since the columns (inputs) are normally at the HIGH logic level due to pull-up resistors, the
only way to make a column LOW will be press a key and make the row for that key LOW.
By periodically strobing each row LOW one row at a time, and reading the column input
levels during each strobe, one can determine which key is pressed.

This is illustrated in the table below for the 3 by 4 keypad. In the Row Mask, Row 1 is
assigned to the Most Significant Bit and Row 4 is assigned to the Least Significant Bit.
Similarly in the Column Mask, Column 1 is assigned to the Most Significant Bit and Column
3 is assigned to the Least Significant Bit.

Action Row Mask Column Mask
No keys were pressed XXX 111
Row 1 Column 1 key pressed 0111 011
Row 1 Column 2 key pressed 0111 101
Row 1 Column 3 key pressed 0111 110
Row 2 Column 1 key pressed 1011 011
Row 2 Column 2 key pressed 1011 101
Row 2 Column 3 key pressed 1011 110
Row 3 Column 1 key pressed 1101 011
Row 3 Column 1 key pressed 1101 101
Row 3 Column 1 key pressed 1101 110
Row 4 Column 1 key pressed 1110 011
Row 4 Column 1 key pressed 1110 101
Row 4 Column 1 key pressed 1110 110

Page 24

A matrix keypad can be scanned for keystrokes using the following algorithm:

Assign a micro-controller port line to each row and column.
Configure rows as output and columns as input.

For all the rows
{
 Make one of the rows LOW
 Read the columns

If any of the columns is LOW, then
{

The key that connects that column and current row is pressed.
Display the key that was pressed to the Terminal Window.

}
}

Instructions

Determine the internal wiring of the Numeric Keypad that comes with the Training Kit using
an Ohmmeter.

Fill in the tables of Keypad Row and Column assignments on the attached Lab5 Exercise
Sheet.

Fill in the Keypad Scan Mask table on the attached Lab5 Exercise Sheet. This table shows
what hexadecimal number will be used on the row outputs to scan each column.

Write a 68HC12 program that implements the keypad scan algorithm that is given in the
Information section of this lab. Save the program as keypad.asm.

Build the program and download to the Training Board. Each time a key is pressed on the
Numeric Keypad, the program should display the key that was pressed.

