

68HC11 Training Lab
Student Exercise Book

Date: 15 August, 1999
Document Revision:1.02

BiPOM Electronics
 16301 Blue Ridge Road, Missouri City, Texas 77489 USA
 Telephone: (713) 283-9970 Fax: (281) 416 - 2806
 E-mail: info@bipom.com
 Web: www.bipom.com

mailto:info@bipom.com
http://www.bipom.com

1 year .

Page 2

© 1999 by BiPOM Electronics. All rights reserved.

68HC11 Training Lab Student Exercise Book. No part of this work may be reproduced in any
manner without written permission of BiPOM Electronics.

All trademarked names in this manual are the property of respective owners.

WARRANTY:

BiPOM Electronics warrants 68HC11 Training Kit for a period of If the Kit becomes
defective during this period, BiPOM Electronics will at its option, replace or repair the Kit. This
warranty is voided if the product is subjected to physical abuse or operated outside stated electrical
limits. BiPOM Electronics will not be responsible for damage to any external devices connected to
the Kit. BiPOM Electronics disclaims all warranties express or implied warranties of merchantability
and fitness for a particular purpose. In no event shall BiPOM Electronics be liable for any indirect,
special, incidental or consequential damages in connection with or arising from the use of this
product. BiPOM’s liability is limited to the purchase price of this product.

Page 3

TABLE OF CONTENTS

INTRODUCTION 4

LAB1 8

LAB2 10

LAB3 12

LAB4 15

LAB5 18

LAB6 20

LAB7 22

Appendix A 25

Page 4

Introduction

The purpose of the 68HC11 Training Lab is to familiarize the student with developing
practical applications for the Motorola 68HC11 series of micro-controllers. 68HC11 is one
of the most popular micro-controllers on the market with applications ranging from
industrial, medical, home automation to automotive.

The 68HC11 Training Kit consists of the following components:

• Motorola M68HC11 EVBU Micro-controller Board (Training Board)
• Motorola M68HC11 Assembler (as11)
• Micro-IDE Integrated Development Environment
• Terminal Board
• Terminal Expansion Cable
• Serial Cable
• 1K Resistors (6 pieces)
• 5K Variable Resistor
• Red LED
• Yellow LED
• Green LED
• Numeric Keypad

The following external items are required for each training kit station:

• IBM Compatible Personal Computer (PC) running Windows 95/98 or NT 4.0.

(68HC11 Training Kit will not work with DOS, Windows 3.1 or lower).
Minimum 16MB memory and 10 MB of available hard disk space.
One available RS232 Serial port.

• 5-Volt regulated power supply.

Figure 1 shows how all the components are connected together.

Page 5

Figure 1

PC

M68HC11EVBU

Terminal Board

RS232 Serial Cable

5-Volt Power Supply

Terminal Extension Cable

GND
VDD

Brown

Black

1

12

2 1 2 1

Micro-IDE

Page 6

Each student or group needs to log on to Windows before using the 68HC11 Training Kit.
Enter the user name and password that your instructor has given to you before the Lab.
Make sure to log out when you are done with the PC at the end of the Lab. Do not share
your username or password with anybody.

All programs are written as Assembly Language Program files which have the extension
.ASM but they are plain text files. Assembly Language Program files are created using
Micro-IDE Integrated Development Environment for Windows.

You can edit and save programs and download to the Training Board using Micro-IDE.
Creating programs and running them on the Training Board consists of the following steps:

1. Edit an existing or create a new program using Micro-IDE Program Editor.

2. Assemble the program using Micro-IDE Build Toolkit (Motorola AS11 Assembler)

3. Download the program to the Training Board using Micro-IDE Serial Loader.

4. Run and debug the program on the Training Board using Micro-IDE Terminal Window.

Figure 2 illustrates these steps.

The 68HC11 micro-controller on the Training Board is factory programmed with a
monitor/debugger environment called BUFFALO (Bit User Fast Friendly Aid to Logical
Operations). You can send commands and run programs on the 68HC11 using BUFFALO
features. BUFFALO communicates with the PC through Micro-IDE’s Terminal Window.

Refer the M68HC11EVBU Universal Evaluation Board User’s Manual to get familiar with
the Training Board and the BUFFALO monitor commands.

Page 7

Create 68HC11 Assembly Programs

Assemble using AS11.EXE

Download to M68HC11EVBU

Execute program

Figure 2

Page 8

LAB1

Overview

The purpose of this lab is to familiarize the student with the Motorola M68HC11EVBU
micro-controller board (Training Board) and the program development environment. In this
lab, students will create a simple 68HC11 program in Assembly language, assemble the
program, download the program to the board and execute the program.

The knowledge developed in this lab will be very useful in subsequent labs when working
with the 68HC11 to develop programs.

Instructions

Type the following program using Micro-IDE editor. This program displays the string “hello”
on the terminal screen and returns control to BUFFALO Monitor.

warmst equ $FF7C
outa equ $FFB8

 ORG $0100

 LDAA #'H'
 JSR outa
 LDAA #'e'
 JSR outa
 LDAA #'l'
 JSR outa
 LDAA #'l'
 JSR outa
 LDAA #'o'
 JSR outa
 JSR warmst

Save the program as hello.asm.

Assemble the program by selecting Build and then Assemble from the menu. (You can
also assemble by clicking the Compile/Assemble button on the toolbar)

Download the program to the board by selecting Build and then Download from the menu. (
You can also download by clicking the Download button on the toolbar)

When the download is complete, you should see the message

Page 9

>done

on the terminal screen.

Verify that the program is indeed downloaded by disassembling 68HC11 memory starting
at address $0100.

Type ASM 100. This should display the first instruction in the program:

0100 LDAA #$48
>

By pressing ENTER several times, you can see the other instructions.

Press CTRL-C to exit the disassembly mode.

Now execute the program by using the G command (short for GO) on the BUFFALO
Monitor. The syntax of G command is:

G <start address>

where <start address> is the starting address where the program execution begins.

Type G 100 to run the program hello.asm on the board.

You should see the following output:

>G 100
Hello
>

The program displays the string “Hello” and then returns to the BUFFALO monitor
displaying the BUFFALO prompt ‘>’.

After completing Lab1, fill in the attached Lab1 Exercise Sheet and turn in to your
instructor.

Page 10

LAB2

Overview

The purpose of this lab is to familiarize the student with 68HC11 arithmetic and logic
instructions. The student will also learn the BUFFALO Monitor’s Trace commands to trace
and debug the operation of a program.

The knowledge developed in this lab will be very useful in subsequent labs when working
with the 68HC11 to develop programs.

Information

BUFFALO Monitor on the Training Board allows tracing through the programs one
instruction at a time using the Trace command (T). Trace command also displays the
68HC11 register contents after each instruction is executed. Before using Trace command,
the Program counter should be set to the starting address of the program to be traced. For
example, to start tracing a program at address $0100, RM command should be used to set
the program counter to $0100.

Instructions

Manually fill in the trace tables on the attached sheet titled 68HC11 Trace Tables before
starting the lab. For each instruction, indicate which registers are effected by filling in the
value of that register after executing the instruction.

Page 11

Type the program shown below and save as trace.asm using Micro-IDE. Build and
download the program to the Training Board.

* This program demonstrates various 68HC11 instructions

VAR1 FCB $A1
VAR2 FCB $FF
VAR3 FCB $69
VAR4 FCB $73
VAR5 FCB $1D
VAR6 FCB $3A
VAR7 FCB $CC
VAR8 FCB $44
VAR9 FCB $84
VAR10 FCB $00
VAR11 FCB $11

MAIN ORG $0100
 LDX VAR4
 LDD VAR10
 LDY VAR11
 STAA $07,Y
 ADDA VAR5
 ADCB #100
 XGDX
 INY
 DECB
 ABY
 ADDB VAR9
 SUBD VAR7
 NEGA
 STX VAR8
 COM VAR10
 MUL
 STD VAR6
 LDD VAR10
 LDX VAR9
 IDIV
 STD VAR4
 STX VAR2
LOOP BRA LOOP

Before using Trace command, set the Program counter to the starting address ($0100) of
trace.asm. Use RM command in the Terminal window to set the program counter.

Use the T command to trace the program. BUFFALO will display the instruction that was
executed and the contents of all the registers. If you enter T followed by a number,
BUFFALO will execute that number of trace commands. For example, if you enter T3,
BUFFALO executes 3 traces. For this lab, trace the program only one instruction at a time.
Use MD command to watch memory contents after executing an instruction.
As you trace through the program, compare the register and memory values to those in the
Trace Table that you manually filled in at the beginning of the lab.

Page 12

LAB3

Overview

The purpose of this lab is to interface the 68HC11 to the outside world by developing
programs to read digital inputs and write to digital outputs.

Information

68HC11 has 5 input/output ports with 38 general-purpose input/output lines. Ports are
grouped in units of 8 and are assigned a port letter. The following are the ports on the
68HC11:

PA0 through PA7
PB0 through PB7
PC0 through PC7
PD0 through PD7
PE0 through PE7 (Port E can be used as both digital ports or analog inputs)

On the Training Board, the following ports are already used:

PA3 - Connected to XIRQ signal for Tracing programs.
PD0 - RS232 Serial port Transmit Line (Used for communicating with the board)
PD1 - RS232 Serial port Receive Line (Used for communicating with the board)

These ports should not be used for user programs.

Each port has a memory-mapped address in the 68HC11’s address space. The following
are the addresses for the ports:

Register name Description Address
PORTA Port A Data Register $1000
PACTL Pulse Accumulator Control $1026
PORTB Port B Data Register $1004
PORTC Port C Data Register $1003

PORTCL Port C Latched $1005
DDRC Port C Data Direction Register $1007

PORTD Port D Data Register $1008
DDRD Port D Data Direction Register $1009

PORTE Port E Data Register $100A

Ports can be made input or output using the Port Direction Registers. After setting the port
as either an input or output, the Port value can be read from or written to using the Port
Data Register.

Page 13

Instructions

Connect the switches and Light emitting Diodes (LED’s) to the Training Board using the
following wiring diagram:

PC0
PC1
PC2

PC3
PC4

VCC

1K 1K 1K 1K 1K

RED YELLOW GREEN

GND

Switch A Switch B

Figure 3

Page 14

Write a 68HC11 program to generate the following results:

Switch A Switch B Red LED Yellow LED Green LED

Open Open OFF OFF ON
Open Closed ON ON OFF

Closed Open OFF OFF ON
Closed Closed OFF OFF OFF

Build the program and download to the Training Board. Trace through the program and
watch the LED’s as you step through each instruction. Open and close Switch A and Switch
B to change the LED’s to make sure that your program is handling every case correctly.

Page 15

LAB4

Overview

The purpose of this lab is to program 68HC11’s Electrically Erasable Read Only Memory
(EEPROM).

The lab is separated into two sections:

1. Downloading a program into EEPROM and running the program from EEPROM.
2. Writing a program to read to, write from and erase the EEPROM.

Information

68HC11 has 512 bytes of EEPROM starting at address $B600 and ending at address
$B7FF. EEPROM can be used for storing both programs and data. The information that is
programmed in the EEPROM stays even if the power to the Training Board is turned off.

The other advantage of using the EEPROM is that the 512-byte EEPROM has twice
storage as the 256-byte RAM available for user programs.

Refer to the Subtitle ‘EEPROM’ under Section ‘Operating Modes and On-Chip Memory’ in
Motorola M68HC11 E Series Technical Data manual.

Instructions

Check the contents of the EEPROM using MD command. If the EEPROM is blank, all bytes
should be $FF (all bits high).

If the EEPROM is not blank, erase the EEPROM using BULK Command.

Use MD command to verify that EEPROM is blank.

Page 16

Type the following simple program using Micro-IDE:

warmst equ $FF7C
outa equ $FFB8

main org $b600

 ldaa #'*'
jsr outa

 jsr warmst

Save the program as lab4.asm.

Note that the entry point of the program is $B600 (instead of $0100) which is the starting
address of the 512-byte EEPROM inside 68HC11.

Since writing to EEPROM is slow, download speed must be decreased by changing the
baud rate of the Training Board to 300 baud.

In BUFFALO monitor, type MM 102B and press ENTER. BUFFALO displays

102B 30

Type 35 and press ENTER. BUFFALO will not respond because it is now set to 300 baud
but our Terminal window is still set to 9600 baud (default value).

Change the baud rate for the Terminal window. To do this, first disconnect from the
Training Board by selecting Toolkit, Terminal, Disconnect. Then select Toolkit, Options and
then Terminal tab. Change the baud rate to 300. Do not change other parameters. Click
OK.

Connect back to the Training Board by selecting Toolkit, Terminal and Connect. Press
Enter. Training Board should now respond because both the Terminal window and the
Training Board are now communicating at 300 baud. Note that the Terminal window is now
updating slower due to lower communications speed.

Change the Loader baud rate also to 300 baud by selecting Toolkit, Options and then
Loader tab. Change the baud rate to 300. Do not change other parameters. Click OK.

Now build lab2.asm as lab2.s19 and download to the Training Board. If the program is built
and downloaded successfully, you should see the message

>done

on the Terminal window.

Page 17

Use the MD command to display the contents of the EEPROM.

Run the program in the EEPROM using the G command.

When you are finished, change the Terminal, Loader and Training Board baud rates back
to 9600:

To change the Training Board baud rate, type MM102B and press ENTER. BUFFALO will
display 102B 35. Type 30 and press ENTER. BUFFALO will not respond because it is now
set to 9600 baud but our Terminal window is still set to 300 baud (default value).

To change the Terminal baud rate, select Toolkit, Options and then Terminal tab. Set the
baud rate to 9600. Click OK.

To change the Loader baud rate, select Toolkit, Options and then Loader tab. Set the baud
rate to 9600. Click OK.

Turn off the Training Board. Turn on the Training board. Connect back to the Training
Board by selecting Toolkit, Terminal and Connect. Check to see if your program is still in
the EEPROM.

Turn off the Training Board. Move Jumper J2 from pins 2 and 3 to pins 1 and 2. This will
cause the program to be started from the EEPROM when the Training Board is turned on
or when the Training Board is reset through the red RESET button on the board.

Turn on the Training Board. The program in the EEPROM should run. Press the RESET
button on the Training Board. The program in the EEPROM should run again.

Write a program that copies the string “Hello” to the beginning of the EEPROM. Download
the program to RAM at address $0100 and execute. Check to see if the string was copied
to EEPROM using MD command.

Page 18

LAB5

Overview

The purpose of this lab is to read voltage values using the M68HC11’s internal Analog-To-
Digital Converter.

Information

One of the core components of M68HC11 is an 8-channel Analog-To-Digital Converter (
ADC). The ADC has 8 bits of resolution which means that the input range is represented
by values 0 through 255 (2^8 – 1). ADC input voltage range is 0 to 5 Volts. A value of 0
corresponds to 0 Volts and a value of 255 corresponds to 5 Volts.

ADC is accessed through a control register (ADCTL) and 4 data registers (ADR1. ADR2,
ADR3 and ADR4).

Instructions

Connect a variable resistor to one of the analog input channels on Port E as shown in
Figure 4.

Figure 4

Write a program that reads the voltage continuously from the analog channel that you
selected and displays it on the Terminal Window.

Port E input line

VCC

GND

Page 19

Connect a digital voltmeter to the middle terminal of the variable resistor. Turn the knob to
obtain the following voltage reading on the voltmeter:

0 Volts (or as close to 0 as possible)
2.5 Volts
5 Volts

Record the readings from the Terminal window for each input voltage. Is the ADC linear ?

Page 20

LAB6

Overview

The purpose of this lab is to program the interrupt handling capability of the M68HC11.

Information

There are 18 interrupt vectors that support 22 interrupt sources on the 68HC11. 15 of the
interrupts are generated by sources within the 68HC11.

The interrupts are listed in Figure 3:

Interrupt Source Interrupt Vector Address
Reserved FFC0 – FFD5
SCI Serial port
• SCI Receive Data Register Full
• SCI Receive Overrun
• SCI Transmit Data Register Empty
• SCI Transmit Complete
• SCI Idle Line Detect

FFD6, FFD7

SPI Serial Transfer Complete FFD8, FFD9
Pulse Accumulator Input Edge FFDA, FFDB
Pulse Accumulator Overflow FFDC, FFDD
Timer Overflow FFDE, FFDF
Timer Input Capture 4/Output Compare 5 FFE0, FFE1
Timer Output Compare 4 FFE2, FFE3
Timer Output Compare 3 FFE4, FFE5
Timer Output Compare 2 FFE6, FFE7
Timer Output Compare 1 FFE8, FFE9
Timer Input Capture 3 FFEA, FFEB
Timer Input Capture 2 FFEC, FFED
Timer Input Capture 1 FFEE, FFEF
Real-Time Interrupt FFF0, FFF1
/IRQ FFF2, FFF3
/XIRQ FFF4, FFF5
Software Interrupt FFF6, FFF7
Illegal Opcode FFF8, FFF9
COP Failure FFFA, FFFB
Clock Monitor Fail FFFC, FFFD
RESET FFFE, FFFF

Page 21

Instructions

Apply the following correction from Motorola to the M68HC11EVBU Universal Evaluation
Board User’s Manual before starting the lab:

The M68HC11EVBU Universal Evaluation Board User¹s Manual contains a printing
error regarding the pseudo-interrupt vectors to be used when running the BUFFALO
monitor. These vectors are located in $0XXX space, not $EXXX space as the manual
states. Go to Table 3-2 (titled ‘Interrupt Vector Jump Table’) in the manual and
change $E’s with $0’s with a pen. The rest of the information is correct.

Write an interrupt handler program to generate a Timer interrupt every second and display
the message “Hello” on the Terminal window.

Page 22

LAB7

Overview

The purpose of this lab is to program the M68HC11 to detect keystrokes from a keypad.

Information

Many keypads are wired as a matrix of rows and columns. Figure 4 shows the internal
connections of a 4 row by 3 column keypad.

Figure 4

ROW 2

ROW 3

ROW 4

COLUMN 1

COLUMN 2

COLUMN 3

ROW 1

VCC

1K 1K 1K

Page 23

Matrix connection saves on the number of connections and micro-controller port lines. For
example, a 3 row by 4 column keypad would require 13 wires (12 + ground) if each key
was individually connected to micro-controller ports. Using the matrix approach and
scanning the keypad under software control reduces the number of wires and port pins to 7
(3 rows + 4 columns).

When a key is pressed, the row for that key will be physically connected to the column for
that key. Therefore, the port input for the column will be at the same logic level as the port
output for the row.

Since the columns (inputs) are normally at the HIGH logic level due to pull-up resistors, the
only way to make a column LOW will be press a key and make the row for that key LOW.
By periodically strobing each row LOW one row at a time, and reading the column input
levels during each strobe, one can determine which key is pressed.

This is illustrated in the table below for the 3 by 4 keypad. In the Row Mask, Row 1 is
assigned to the Most Significant Bit and Row 4 is assigned to the Least Significant Bit.
Similarly in the Column Mask, Column 1 is assigned to the Most Significant Bit and Column
3 is assigned to the Least Significant Bit.

Action Row Mask Column Mask
No keys were pressed XXX 111
Row 1 Column 1 key pressed 0111 011
Row 1 Column 2 key pressed 0111 101
Row 1 Column 3 key pressed 0111 110
Row 2 Column 1 key pressed 1011 011
Row 2 Column 2 key pressed 1011 101
Row 2 Column 3 key pressed 1011 110
Row 3 Column 1 key pressed 1101 011
Row 3 Column 1 key pressed 1101 101
Row 3 Column 1 key pressed 1101 110
Row 4 Column 1 key pressed 1110 011
Row 4 Column 1 key pressed 1110 101
Row 4 Column 1 key pressed 1110 110

Page 24

A matrix keypad can be scanned for keystrokes using the following algorithm:

Assign a micro-controller port line to each row and column.
Configure rows as output and columns as input.

For all the rows
{
 Make one of the rows LOW
 Read the columns

If any of the columns is LOW, then
{

The key that connects that column and current row is pressed.
Display the key that was pressed to the Terminal Window.

}
}

Instructions

Determine the internal wiring of the Numeric Keypad that comes with the Training Kit using
an Ohmmeter.

Fill in the tables of Keypad Row and Column assignments on the attached Lab7 Exercise
Sheet.

Fill in the Keypad Scan Mask table on the attached Lab7 Exercise Sheet. This table shows
what hexadecimal number will be used on the row outputs to scan each column.

Write a 68HC11 program that implements the keypad scan algorithm that is given in the
Information section of this lab. Save the program as keypad.asm.

Build the program and download to the Training Board. Each time a key is pressed on the
Numeric Keypad, the program should display the key that was pressed.

Page 25

Appendix A: List of available BUFFALO Subroutines

Name Address Description
.BPCLR $FF7F Clear Breakpoint Table
.BUFFAR $FF88 Read 4-digit Hex argument from input buffer into SHFTREG ($009C - $009D)
.CHGBYT $FF8E Write value from SHFTREG+1 ($00D9) to memory location pointed to by X
.CHKABR $FF9D Monitor input for (CTL)X, (DEL), OR (CTL)W

.DCHEK $FFA6 Test character in A and return with CCR Z bit set if character is a delimiter
(carriage return or white-space)

.DECBUF $FF97 Decrement pointer into input buffer

.HEXBIN $FF85 Convert ASCII character in A to 4-bit binary number placing it into SHFTREG
($009C - $009D)

.INCBUF $FF94 Increment pointer into input buffer

.INCHAR $FFCD Input ASCII character to A and echo back. Wait till character is received.

.INIT $FFA9 Initialize I/O device

.INPUT $FFAC Read I/O device

.OUT1BS $FFBE Convert byte at address in X to two ASCII characters and outputs followed by a
space. Returns with X pointing to next byte.

.OUT1BY $FFBB Convert byte at address in X to two ASCII characters and outputs. Returns with
X pointing to next byte.

.OUT2BS $FFC1 Convert word at address in X to four ASCII characters and outputs followed by
a space. Returns with X pointing to next byte.

.OUTA $FFB8 Output A (ASCII character)

.OUTCRT $FFC4 Output ASCII carriage return followed by a line feed

.OUTLHL $FFB2 Convert left nibble of A to ASCII and output to terminal

.OUTPUT $FFAF Write I/O device

.OUTRHL $FFB5 Convert right nibble of A to ASCII and output to terminal

.OUTST0 $FFCA Output string of ASCII bytes pointed to by address in X until character is an
EOT ($04) No leading carriage return.

.OUTSTR $FFC7 Output string of ASCII bytes pointed to by address in X until character is an
EOT ($04)

.READBU $FF91 Read next character from INBUFF ($0071)

.RPRINT $FF82 Display the user's Registers

.TERMAR $FF8B Read 4-digit Hex argument from terminal device into SHFTREG ($009C -
$009D)

.UPCASE $FFA0 If character in A is lower case alpha make it upper case

.VECINIT $FFD0 Used to initialize the indirect interrupt vector area of RAM. (Needed when
starting at $B600)

.WARMST $FF7C Go to the ">" prompt

.WCHEK $FFA3 Test character in A and return with CCR Z bit set if character is a white-space
(space, comma, tab)

.WSKIP $FF9A Read input buffer until non-white-space character found

