

University of Houston College of Technology Department of Engineering Technology Computer Engineering Technology Program ELET 4308/4208 Senior Project SCS-2250 Fall 2008 October 30, 2008

Team Members: Desmond Douglas Julio Flores Heriberto Moreno Rogelio Topete

Project Advisor: Dr. Farrokh Attarzadeh

Introduction

□ Motivation

- To eliminate the hassle of cleaning the shower every week
- To prevent the collection of mold and fungi
- □ Existing Prior Work
 - Scrubbing Bubbles Automatic Shower Cleaner
 - Patent number: 7337989
 - Patented on March 9, 2007

Project Objective

The goal for the project was to provide an alternate method for cleaning and maintaining the shower area clean

\Box The SCS-2250 is:

- Programmable for the user to determine when cleaning will take place
- Affordable when building a new home or remodeling an existing home

Which One Should I Choose?

- Scrubbing Bubbles does not have the spot flexibility of a hand spray
- The SCS-2250 is designed to spray the same areas that you would clean with a hand spray
- Scrubbing Bubbles mounts over the shower head, so it only sprays on the other shower walls
- □ **The SCS-2250** sprays every shower wall equally
- □ Scrubbing Bubbles needs batteries in order to operate
- There is no need for batteries for the SCS-2250 because the power comes from the user's home power supply

Description

This project requires the integration of:

- PVC Pipes
- LCD Screen
- Microcontroller
- Real-Time Clock
- Expansion Board
- Keypad
- Electric Valves
- Cleaning Agent Tank
- Cleaning Solution
- Hoses
- Hose Connectors
- Plexiglass
- Wires
- Transistor Array IC
- Relays
- Sealant

Set Up

- Microcontroller is connected to a NTE 2013 IC (7 Transistors)
- 5 outputs of the IC are connected to 5 relays
- Relays are connected to 5 12V electric valves
- LCD and Keypad provide the user interface for the system
- 4 perforated PVC pipes on each corner of stand up shower
- Valves are set up to activate 2 pipes at a time
- Pipes are connected to water supply and cleaning solution container

Visual Representation

SIDE VIEW

Mode of Operation

SCS-2250 starts up and asks user to input the time and select the schedule of operation

 Daily, Bi-weekly, and weekly cleaning

The microcontroller will check the variables entered during setup with the variables of the RTC

- Once the RTC matches with the assigned cleaning time the cleaning process will begin
- Cleaning solution is pumped through two PVC pipes at a time to be dispersed to the shower walls

Verification

- □ Relays
 - Verified that each relay was working according to the code
- □ Electric valve test
 - The electric valves were connected to the microcontroller during testing to ensure the programming was correct
- □ Water Pressure Test
 - The water pressure was tested to make sure that the shower walls were cleaned equally
- □ Complete system run-through
 - This was done once the building of the SCS-2250 was complete. This ensured the circuitry, components, and program are working properly

Cost Analysis

Item	Estimated Cost	Actual Cost
Microcontroller	\$70.00	\$70.00
Plexiglass	\$80.00	\$128.91
PVC	\$15.00	\$5.31
RTC-1 Board	\$49.00	\$63.04
Expansion Board	\$24.00	\$34.00
Electric Valves	\$40.00	\$41.96
7 CH Darlington IC	\$5.00	\$5.00
Totals	\$283.00	\$348.22

Donated Items

Item	Estimated Cost	Actual Cost
Door Hinges	\$10.00	\$9.18
Circuit Enclosure	\$20.00	\$18.40
Fittings	\$15.00	\$16.12
Square Brackets	\$15.00	\$10.67
Acrylic Sealant	\$8.00	\$7.94
Wires	\$5.00	\$5.49
Electrical Connectors	\$3.00	\$2.99
Black Wire Conduit	\$3.00	\$2.99
Relays	\$25.00	\$19.75
12 VDC Transformer	\$10.00	\$9.90
Totals	\$114.00	103.43

Labor Cost

Member	Hourly Rate	Number of Hours	Salary
Desmond Douglas	\$25.00	200	\$5,000
Julio Flores	\$25.00	200	\$5,000
Rogelio Topete	\$25.00	200	\$5,000
Heriberto Moreno	\$25.00	200	\$5,000
Total Labor Cost			\$20,000
Total Project Cost			\$20,348.22

Project Gantt Chart

Plan of Action

Conclusion

Very rewarding experience
Learned a lot about team dynamics
Used acquired skills throughout the years to complete an original project

References

- "Automated cleansing sprayer patent." <u>Google</u> <u>Patent Search</u>. 23 November 2004. http://www.google.com/patents?id=Yk0QAA AAEBAJ&dq=automated+shower+cleaner
- "How do I keep a Shower Clean." <u>Wise Geeek</u>. April 2007 http://www.wisegeek.com/howdo-i-keep-a-shower-clean.htm
- "How to prevent and remove mildew : home methods." <u>U.S. Dept. of Agriculture, Science and</u> <u>Education Administration</u>. Nov.1980.

Questions