MINI-MAX/AVR-BU

AVR Microcontroller and USB Converter Board

Technical Manual

Date: 21 September, 2009 Document Revision: 1.01

16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970. Fax: 1-281-416-2806 E-mail: info@bipom.com Web: www.bipom.com © 1996-2009 by BiPOM Electronics. All rights reserved.

MINI-MAX/AVR-BU USB Converter Board Technical Manual. No part of this work may be reproduced in any manner without written permission of BiPOM Electronics.

All trademarked names in this manual are the property of respective owners.

WARRANTY:

BiPOM Electronics warrants MINI-MAX/AVR-BU for a period of 1 year. If the board becomes defective during this period, BiPOM will at its option, replace or repair the board. This warranty is voided if the product is subjected to physical abuse or operated outside stated electrical limits. BiPOM Electronics will not be responsible for damage to any external devices connected to MINI-MAX/AVR-BU. BiPOM Electronics disclaims all warranties express or implied warranties of merchantability and fitness for a particular purpose. In no event shall BiPOM Electronics be liable for any indirect, special, incidental or consequential damages in connection with or arising from the use of this product. BiPOM Electronics' liability is limited to the purchase price of this product.

1. Overview

MINI-MAX/AVR-BU is a general purpose, low-cost and highly-expandable microcontroller system with device USB support. It is based on the ATMEL AT90USB647-AU 8-bit microcontroller with integrated USB controller.

The Flash microcontroller can be programmed through USB or JTAG connectors. This simplifies new program development and debugging. Downloading of a program to the microcontroller typically takes few seconds.

Software examples for MINI-MAX/AVR-BU USB are available from www.bipom.com

2. Specifications

MINI-MAX/AVR-BU USB board has the following configuration:

- AT90USB647-AU microcontroller with the following features:
 - Program execution speed up to 8-16 MIPS at 8-16MHz
 - 64 Kilobytes of Flash
 - 2 Kilobyte of EEPROM
 - 4 Kilobyte of RAM
 - 48 Programmable I/O Lines
 - One 2-wire UART
 - One Master/Slave Serial Peripheral Interface (SPI)
 - One 2-wire Interface (TWI) with I²C features
 - USB 2.0 Full-speed/Low-speed Device and On-The-Go Module
 - 832 Bytes USB DPRAM
 - Two 8-bit Timers
 - Two 16-bit Timers
 - One Programmable Watchdog Timer with Separate On-chip Oscillator
 - Four 8-bit PWM Channels
 - Six PWM Channels with Programmable Resolution from 2 to 16 Bits
 - One Output Compare Modulator
 - 8-channels, 10-bit ADC
 - JTAG (IEEE std. 1149.1 compliant) Interface
- Device mini USB Port for Full Speed (12 Mbit per Second) up stream data communication
- 8-pin connector for 2-wire UART (5V levels)
- 14-pin connector for external LCD
- 10-pin connector for external KEYPAD
- 10-pin terminal block for 5 analog inputs, +2.56 Volts reference output and 5 Volts analog supply
- 20-pin Expansion connector for peripheral boards (<u>http://www.bipom.com/periph_boards.shtm</u>)
- 10-pin JTAG Port connector for In-circuit Programming and a real time debugging In-circuit Programming and debugging of the microcontroller through the JTAG Interface using 10-pin JTAG
- MINI-MAX/AVR-BU is powered from a 5 Volt DC external power source through the USB connector.
- Current consumption is less than 20mA at 5 Volt DC.
- Dimensions are 2.35 X 2.40 inches (5.97 X 6.10 centimeters).
- Mounting holes of 0.138 inches (3.5 millimeters) are on four corners.
- 0° 70° C operating, -40° +85° C storage temperature range.

3. Functional Blocks

Figure 1 shows the block diagram of the MINI-MAX/AVR-BU board:

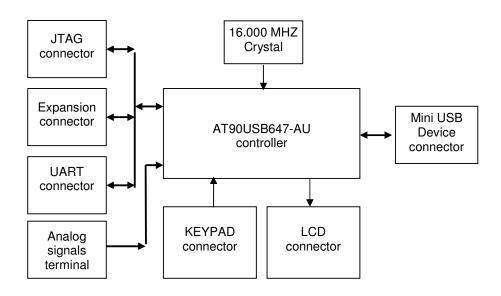


Figure 1

Expansion connector

Control signals and 5 Volt power supply are available on the 20-pin connector (X8) for interfacing to peripheral boards. A peripheral board can be connected to MINI-MAX/AVR-BU board either as a piggyback daughterboard using standoffs or can be placed away from the microcontroller board using a 20-wire ribbon cable (Part #: EXPCABLE-6).

Table 1 shows the pin assignments for the X1 connector:

Signal	Pin	Pin	Signal
RXD	20	19	TXD
PE1	18	17	MISO
SCK	16	15	CS
PE4	14	13	MOSI
PE5	12	11	PF5
PE6	10	9	PF6
PE7	8	7	PF7
I2C SCL	6	5	I2C SDA
Not connected	4	3	GND
VCC (+5V)	2	1	Not connected

Expansion Connector (X8)

Table 1

JTAG Port connector

JTAG port is available on a 10-pin male connector X1. Table 2 shows the pin assignment of the JTAG port connector:

Pin	Name	Signal
1	PF4	Test clock Input
2,10	GND	Power ground
3	PF6	Test Data Output
4	5V	5V Power Output
5	PF5	Test Mode Select Input
6	RESET	Test Reset Input
7,8	-	Not Connected (NC)
9	PF7	Test Data Input

JTAG Port Connector (X1)

Table 2

LCD Module Connector

LCD connector is available on a 14-pin male connector X9. Table 3 shows the pin assignment of the LCD connector:

LCD Connector (X9)

Pin	Name	Signal
1	GND	Power ground
2	5V	Power supply
3	VEE	Analog output
4	CTRL	CTRL
5	READ	Read execution control input
6	STRB	STRB
8	-	Not Connected (NC)
7,914	LD0LD7	Data input bus

Table 3

KEYPAD Module Connector

KEYPAD connector is available on a 10-pin male connector X2. Table 4 shows the pin assignment of the KEYPAD connector:

KEYPAD Connector (X2)

Pin	Name	Signal
18	KEY07	Input keys
9	GND	Power ground
10	5V	Power supply

Table 4

Analog Input Connector

Table 5 shows the pin assignment of the analog input connector:

Pin	Name	Signal
1	AN0	Analog input 0
2	AN1	Analog input 1
3,5,9	AGND	Analog Ground
4	AN2	Analog input 2
6	AN3	Analog input 3
7	AREF	+2.56V REF Output
8	AN4	Analog input 4
10	VAN	5V Output

Analog Input Connector (X6)

Table 5

UART Connector

Tables 6 show the pin assignment of the UART0 connector:

UART0 Connector (X7)

Pin	Name	Signal
1,2,4,7	GND	Power ground
3	-	Not Connected
5	TXD	Data output
6	RXD	Data input
8	5V	Power supply

Table 6

USB Device connector

Standard Type Mini 'B' Right Angle Receptacle connector is used for USB Device bus. Tables 7 show the pin assignment of the USB connector:

USB Connector (X10)

Pin	Name	Signal
1	VBUS	+5V Power input
2	D-	Data (-)
3	D+	Data (+)
4	PE3	GPIO
5	GND	Ground
611	SGND	Shield

Table 7.

Jumpers

Tables 8 shows the Jumper assignments:

Jumpers X3, X4, X5

Name	Signal	Open	Closed
X3	HWB	Hardware Boot Disabled	Hardware Boot Enabled
X4	AN4	Analog input 4 Disabled	Analog input 4 Enabled
X5	PF4	JTAG Disabled	JTAG Enable

Table 8

4. Application Notes

The **FLIP** software is used for a programming of MINI-MAX/AVR-BU through USB interface. <u>http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886</u>

A peripheral board can either be stacked on top of MINI-MAX/AVR-BU using stand-offs or connected in a chain configuration using flat ribbon cable. Figure 2 shows how DAC-2 peripheral board can be connected to a single board computer in a stacked fashion. Figure 3 shows the chain connection.

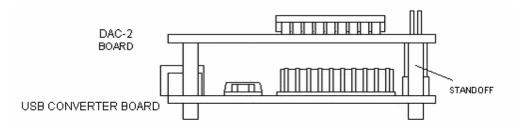
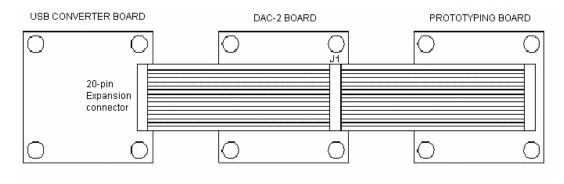
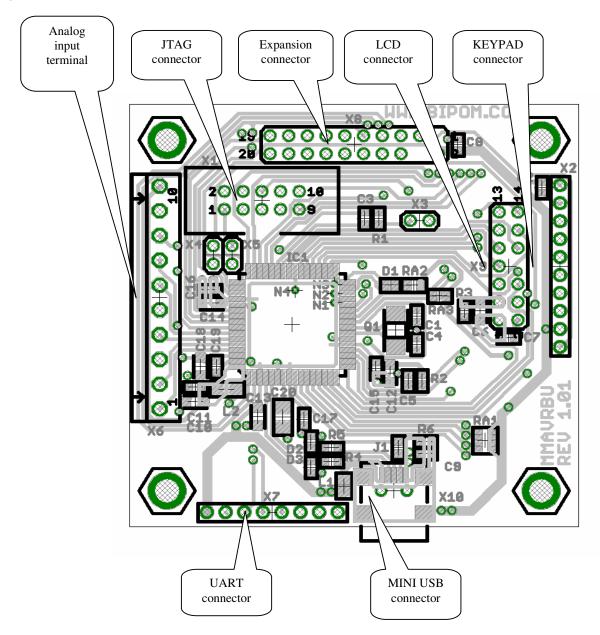
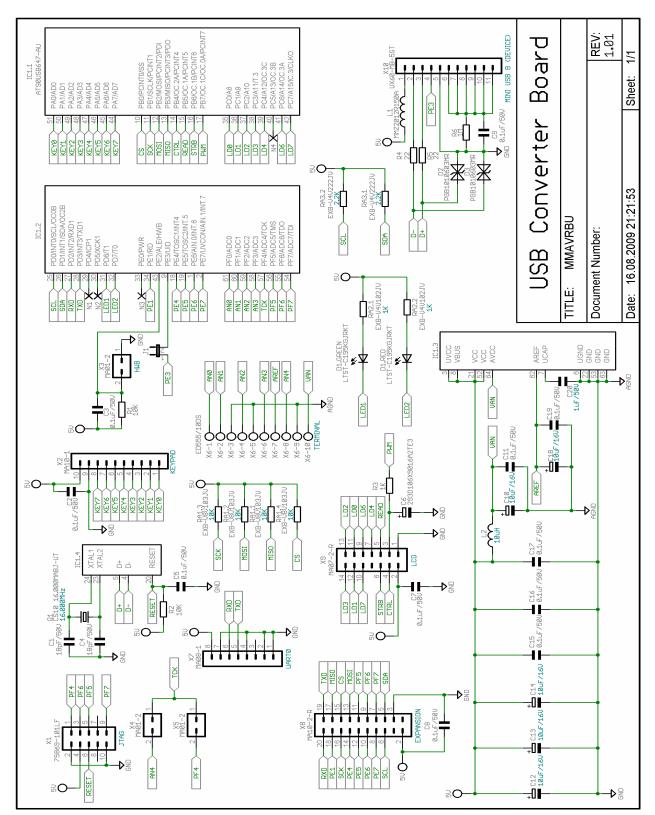



Figure 2




More details on BiPOM Peripheral boards are available from: http://www.bipom.com/periph_boards.php

5. Board Layout

Top view of the MINI-MAX/AVR-BU board is shown below:

6. Schematics

