# MINI-MAX/AVR-C Single Board Computer Technical Manual

Date: 14 October, 2014 Document Revision: 1.05



16301 Blue Ridge Road, Missouri City , Texas 77489 Telephone: 1-713-283-9970. Fax: Fax: 1-281-416-2806 E-mail: <u>info@bipom.com</u> Web: <u>www.bipom.com</u> © 1996-2012 by BiPOM Electronics. All rights reserved.

MINI-MAX/AVR-C Single Board Computer Technical Manual. No part of this work may be reproduced in any manner without written permission of BiPOM Electronics.

All trademarked names in this manual are the property of respective owners.

WARRANTY:

BiPOM Electronics warrants MINI-MAX/AVR-C for a period of 1 year. If the board becomes defective during this period, BiPOM will at its option, replace or repair the board. This warranty is voided if the product is subjected to physical abuse or operated outside stated electrical limits. BiPOM Electronics will not be responsible for damage to any external devices connected to MINI-MAX/AVR-C. BiPOM Electronics disclaims all warranties express or implied warranties of merchantability and fitness for a particular purpose. In no event shall BiPOM Electronics be liable for any indirect, special, incidental or consequential damages in connection with or arising from the use of this product. BiPOM Electronics' liability is limited to the purchase price of this product.

# TABLE OF CONTENTS

| 1. OVERVIEW          | 4  |
|----------------------|----|
| 2. SPECIFICATIONS    | 5  |
| 3. FUNCTIONAL BLOCKS | 6  |
| 4. APPLICATION NOTES | 12 |
| 5. BOARD LAYOUT      | 13 |
| 6. SCHEMATICS        | 16 |

# 1. Overview

MINI-MAX/AVR-C is a general purpose, low-cost and highly-expandable micro-controller system. It is based on the ATMEL ATMEGA2560-16 flash micro-controller. This micro-controller features:

- Up to 16 MIPS throughput at 16 MHz
- 256 Kilobytes of In-System Re-programmable Downloadable Flash Memory
- 8 Kilobytes of RAM
- 4 Kilobytes of EEPROM
- Two 8 bit Timer/Counters and four 16 bit Timer/Counters
- Programmable Watchdog Timer
- Four Programmable Enhanced UART Serial Interfaces
- SPI Serial Interface
- 2-wire Serial Interface (I<sup>2</sup>C)
- 12 Pulse Width Modulation (PWM) channels
- 16 channel 10-bit ADC with selectable 2.56V or 1.1V Reference Voltage
- 86 general purpose I/O pins
- Real time In-System debug support through JTAG Interface

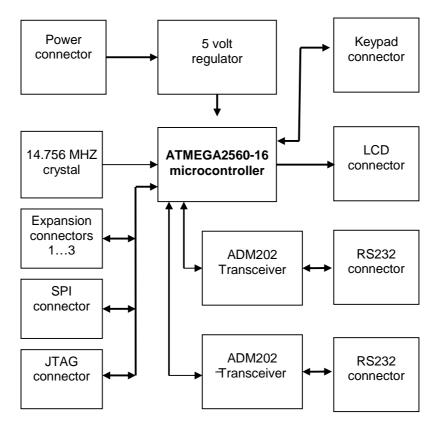
MINI-MAX/AVR-C board complements these features by adding:

- In-circuit Programming and debugging of the micro-controller through JTAG and SPI interfaces
- Two RS232 Serial Ports and two UART Ports (TTL/CMOS level) for data communications
- Analog input terminal blocks (for 5 channels)
- Keypad connector
- LCD connector ( with programmable contrast adjustment for LCD )
- Expansion bus interface to low-cost peripheral boards such as
  - Instrumentation amplifiers
    - Pressure inputs
    - Strain-gage inputs
    - 12 and 16-bit Analog-to-Digital Converters
    - Digital Input/Output cards
    - LED and LCD displays.

The flash micro-controller can be serially programmed while on the board. This function of the FLASH micro-controller simplifies new program development and debugging. Downloading of a program to the micro-controller typically takes few seconds.

MINI-MAX/AVR-C should be powered from a 6 to 12 Volt (DC) external power source. Current consumption of the board ( without peripherals ) is less than 60mA.

Software examples for MINI-MAX/AVR-C are available from <a href="http://www.bipom.com/web\_softwares/851677.html">http://www.bipom.com/web\_softwares/851677.html</a>


# 2. Specifications

MINI-MAX/AVR-C board has the following configuration:

- ATMEL ATMEGA2560-16 micro-controller with
  - 256 Kbytes on-chip Flash program/data Memory,
  - 8 Kbytes RAM
  - 4 Kbytes EEPROM
- JTAG Port for In-circuit Programming and a real time debugging
- SPI Port connector for In-circuit Programming and for data communication
- Two RS232 Serial Ports for data communications
- Two UART Ports with 5V signals for data communications
- 10-pin terminal block for 5 analog inputs, Reference (Vref) output and AVCC output
- Three 20-pin Expansion connectors for a peripheral boards
- 10-pin connector for matrix and non-matrix keypads
- Dual-row 14-pin LCD connector (with software contrast adjustment for LCD)
- Single operating voltage: 6 to 12 VDC, 60 mA maximum supply consumption.
- On-board 5 Volt regulator
- Dimensions are 2.35 X 2.40 inches (5.97 X 6.10 centimeters).
- Mounting holes of 0.138 inches (3.5 millimeters) are on four corners.
- 0° 70° C operating, -40° +85° C storage temperature range.

# **3. Functional Blocks**

Figure 1 shows the block diagram of the MINI-MAX/AVR-C board





#### JTAG Port connector

JTAG port is available on a 10-pin, dual-row male connector X1.

Table 1 shows the pin assignments for the JTAG port connector:

#### JTAG Port Connector (X1)

| Signal Name | AVR Port | Description                   | Pin |
|-------------|----------|-------------------------------|-----|
| ТСК         | PF4      | MINI-MAX/AVR Test clock Input | 1   |
| GND         |          | GND                           | 2   |
| TDO         | PF6      | MINI-MAX/AVR Test Data Output | 3   |
| VDD         |          | MINI-MAX/AVR Power Output     | 4   |
| TMS         | PF5      | Test Mode Select Input        | 5   |
| /RST        |          | MINI-MAX/AVR Reset Input      | 6   |
| VCC         |          | MINI-MAX/AVR Power Output     | 7   |
| -           |          | Not Connected (NC)            | 8   |
| TDI         | PF7      | MINI-MAX/AVR Test Data Input  | 9   |
| GND         |          | GND                           | 10  |

#### SPI Port connector

SPI port is available on a 6-pin, dual-row male connector X2. This connector can also be used for downloading programs using programmers such as <u>AVRISP</u> and <u>AVR Dragon</u>.

Table 2 shows the pin assignments for the SPI port connector:

| Name | AVR Port | Description              | Pin |
|------|----------|--------------------------|-----|
| MISO | PB3      | SPI Data Input/Output    | 1   |
| VCC  |          | +5V output               | 2   |
| SCK  | PB1      | SPI clock                | 3   |
| MOSI | PB2      | SPI Data Input/Output    | 4   |
| /RST | RESET    | MINI-MAX/AVR Reset Input | 5   |
| GND  |          | GND                      | 6   |

#### SPI Port Connector (X2)

#### Table 2

#### **LCD Connector**

Alphanumeric LCD displays can be connected directly to MINI-MAX/AVR-C. For example, <u>LCD242</u> (Alphanumeric, 24 Characters x 2 lines) can be connected.

#### LCD Connector (X3)

| Signal Name      | AVR Port | Pin | Pin | AVR Port | Signal Name   |
|------------------|----------|-----|-----|----------|---------------|
| LD3              | PL3      | 14  | 13  | PL2      | LD2           |
| LD1              | PL1      | 12  | 11  | PL0      | LD0           |
| Not connected    |          | 10  | 9   |          | Not connected |
| Not connected    |          | 8   | 7   |          | Not connected |
| STROBE           | PL6      | 6   | 5   | PL5      | READ          |
| LD4              | PL4      | 4   | 3   | PG5      | Vee (V-PWM)   |
| VCC (+5V) output |          | 2   | 1   |          | GND           |

#### Keypad Connector

8 port pins of the MINI-MAX/AVR-C are connected to the Keypad Connector (X4). <u>Matrix keypads</u> ( $3 \times 5 \text{ or } 4 \times 4$ ) can be connected directly to the connector. 5 Volt and Ground power lines are also available on the connector.

The keypad connector can also be used as a general-purpose 8-pin input/output port.

Table 4 shows the pin assignments for the Keypad connector:

| Name  | AVR Port | Description | Pin |
|-------|----------|-------------|-----|
| VCC   |          | +5V output  | 10  |
| GND   |          | Ground      | 9   |
| Key 7 | PH7      | KEY7 In/Out | 8   |
| Key 6 | PH6      | KEY6 In/Out | 7   |
| Key 5 | PH5      | KEY5 In/Out | 6   |
| Key 4 | PH4      | KEY4 In/Out | 5   |
| Key 3 | PK3      | KEY3 In/Out | 4   |
| Key 2 | PK2      | KEY2 In/Out | 3   |
| Key 1 | PK1      | KEY1 In/Out | 2   |
| Key 0 | PK0      | KEY0 In/Out | 1   |

#### Keypad Connector (X4)

Table 4

#### Asynchronous Serial Port 0

Asynchronous RS232 serial port 0 (UART0) is available on a 10-pin, dual-row male connector X5.

Table 5 shows the pin assignments for the RS232 serial port 0 connector:

| Signal Name | AVR Port | Description         | Pin |
|-------------|----------|---------------------|-----|
| -           |          | Not Connected (NC)  | 1   |
| PGM         |          | MINI-MAX/AVR Input  | 2   |
| RXD0        | PE0      | MINI-MAX/AVR Input  | 3   |
| RTS0        | PE2      | MINI-MAX/AVR Output | 4   |
| TXD0        | PE1      | MINI-MAX/AVR Output | 5   |
| CTS0        | PE3      | MINI-MAX/AVR Input  | 6   |
| -           |          | NC                  | 7   |
| -           |          | NC                  | 8   |
| GND         |          | GND                 | 9   |
| -           |          | NC                  | 10  |

#### Serial Port Connector (X5)

#### Asynchronous Serial Port 1

Asynchronous RS232 serial port 1 (UART1) is available on a 10-pin, dual-row male connector X8. Table 6 shows the pin assignments for the RS232 serial port 1 connector:

| Signal Name | AVR Port | Description         | Pin |
|-------------|----------|---------------------|-----|
| -           |          | Not Connected (NC)  | 1   |
| -           |          | NC                  | 2   |
| RXD1        | PD2      | MINI-MAX/AVR Input  | 3   |
| RTS1        | PD4      | MINI-MAX/AVR Output | 4   |
| TXD1        | PD3      | MINI-MAX/AVR Output | 5   |
| CTS1        | PD5      | MINI-MAX/AVR Input  | 6   |
| -           |          | NC                  | 7   |
| -           |          | NC                  | 8   |
| GND         |          | GND                 | 9   |
| -           |          | NC                  | 10  |

#### Serial Port Connector (X8)

#### **Expansion connectors**

50 port pins and 5 Volt power supply pins are available on three 20-pin connectors (X6, X7, X9) for interfacing to peripheral boards. A peripheral board can be connected to MINI-MAX/AVR-C board either as a piggyback daughter-board using standoffs or can be placed away from the micro-controller board using a 20-wire ribbon cable (Part #: <u>CBL-EXP-6</u>).

Signals TXD2, RXD2 of the UART port 2 and SPI signals are available on a 20-pin connector X6. Signals TXD3, RXD3 of the UART port 3 are available on a 20-pin connector X7. Tables 7, 8, 9 shows the pin assignments for the X6, X7, X9 connectors:

| Signal Name | AVR Port | Pin | Pin | AVR Port | Signal Name |
|-------------|----------|-----|-----|----------|-------------|
| /RXD2       | PH0      | 20  | 19  | PH1      | /TXD2       |
| 106         | PH2      | 18  | 17  | PB3      | MISO        |
| SCK         | PB1      | 16  | 15  | PB0      | SS          |
| IO22        | PC7      | 14  | 13  | PB2      | MOSI        |
| IO1         | PB5      | 12  | 11  | PB4      | IO0         |
| IO3         | PB7      | 10  | 9   | PB6      | IO2         |
| 105         | PD7      | 8   | 7   | PD6      | IO4         |
| I2C SCL     | PD0      | 6   | 5   | PD1      | I2C SDA     |
| VCC (+5V)   |          | 4   | 3   |          | GND         |
| VCC (+5V)   |          | 2   | 1   |          | GND         |

#### Table7: Connector X6

#### Table 8: Connector X7

| Signal Name | AVR Port | Pin | Pin | AVR Port | Signal Name |
|-------------|----------|-----|-----|----------|-------------|
| /RXD3       | PJ0      | 20  | 19  | PJ1      | /TXD3       |
| IO20        | PK6      | 18  | 17  | PL7      | IO21        |
| IO8         | PE5      | 16  | 15  | PH3      | IO9         |
| IO10        | PE6      | 14  | 13  | PK4      | IO11        |
| IO12        | PE7      | 12  | 11  | PK5      | IO13        |
| IO14        | PJ2      | 10  | 9   | PJ3      | IO15        |
| IO16        | PJ4      | 8   | 7   | PJ5      | IO17        |
| IO18        | PJ6      | 6   | 5   | PJ7      | IO19        |
| VCC (+5V)   |          | 4   | 3   |          | GND         |
| VCC (+5V)   |          | 2   | 1   |          | GND         |

#### Table9: Connector X9

| Signal Name | AVR Port | Pin | Pin | AVR Port | Signal Name |
|-------------|----------|-----|-----|----------|-------------|
| D1          | PA1      | 20  | 19  | PA0      | D0          |
| D3          | PA3      | 18  | 17  | PA2      | D2          |
| D5          | PA5      | 16  | 15  | PA4      | D4          |
| D7          | PA7      | 14  | 13  | PA6      | D6          |
| A3          | PC3      | 12  | 11  | PC2      | A2          |
| A1          | PC1      | 10  | 9   | PC4      | A4          |
| IOR         | PG1      | 8   | 7   | PC0      | A0          |
| AEN         | PC5      | 6   | 5   | PC6      | RESET       |
| IOW         | PG0      | 4   | 3   | PE4      | INT0        |
| VCC (+5V)   |          | 2   | 1   |          | GND         |

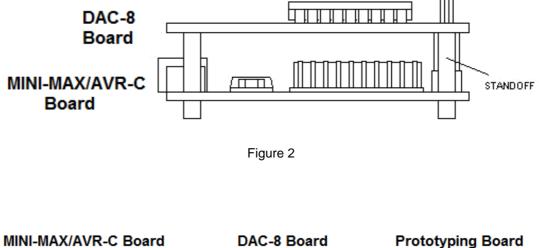
#### Analog Input connector

Table 10 shows the pin assignments for the analog input connector:

| Signal Name | AVR Port | Description    | Pin |
|-------------|----------|----------------|-----|
| AN0         | PF0      | Analog input 0 | 1   |
| AN1         | PF1      | Analog input 1 | 2   |
| AGND        |          | Analog Ground  | 3   |
| AN2         | PF2      | Analog input 2 | 4   |
| AGND        |          | Analog Ground  | 5   |
| AN3         | PF3      | Analog input 3 | 6   |
| VREF        |          | Output         | 7   |
| AN4         | PF4      | Analog input 4 | 8   |
| AGND        |          | Analog Ground  | 9   |
| AVCC        |          | Output         | 10  |

#### Analog Input Connector X10

Table 10


#### Power Supply

External power supply should be able to supply 6 to 12 Volts DC at 100 mA current

**WARNING:** Correct polarity should be observed when applying external DC supply to Expansion connector.

### 4. Application Notes

A peripheral board can either be stacked on top of MINI-MAX/AVR-C using stand-offs or connected in a chain configuration using flat ribbon cable. Figure 2 shows how <u>DAC-8</u> peripheral board can be connected to a Micro-Computer board in a stacked fashion. Figure 3 shows the chain connection.



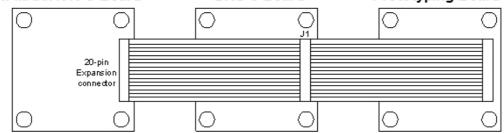
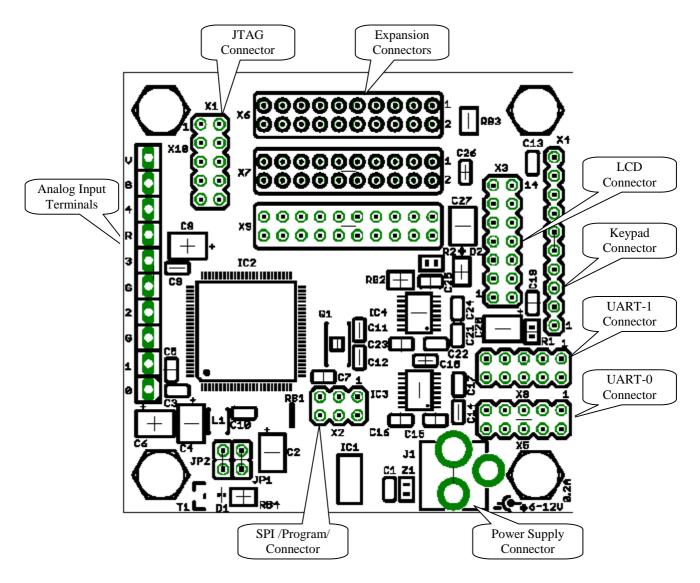
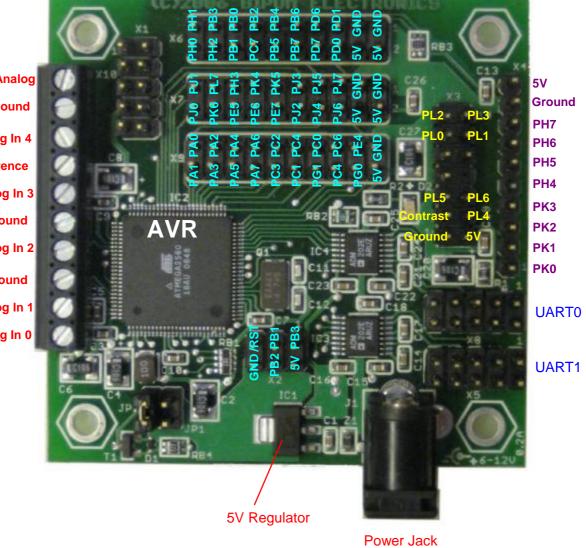



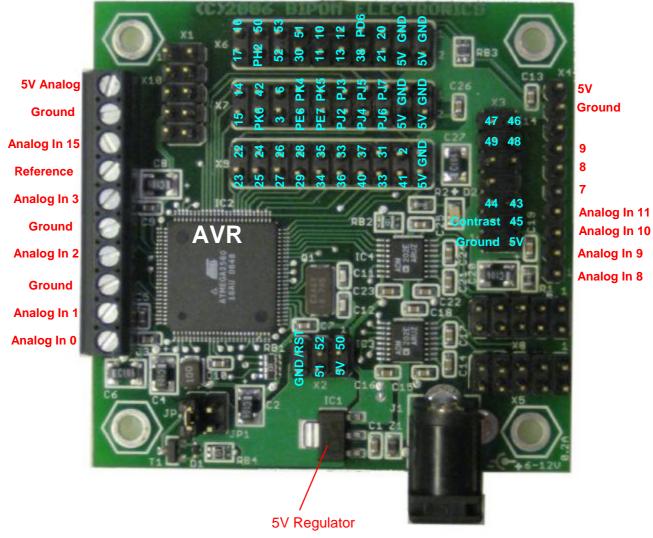

Figure 3

For a complete list of BiPOM Peripheral boards, please visit: <a href="http://www.bipom.com/periph\_cat/us/44/0.html">http://www.bipom.com/periph\_cat/us/44/0.html</a>


## 5. Board Layout

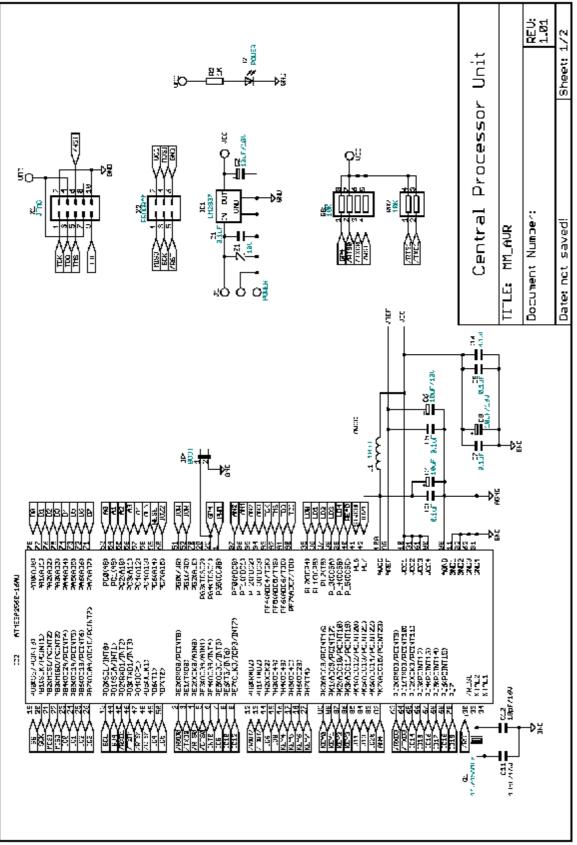
Layout of MINI-MAX/AVR-C board is shown below:

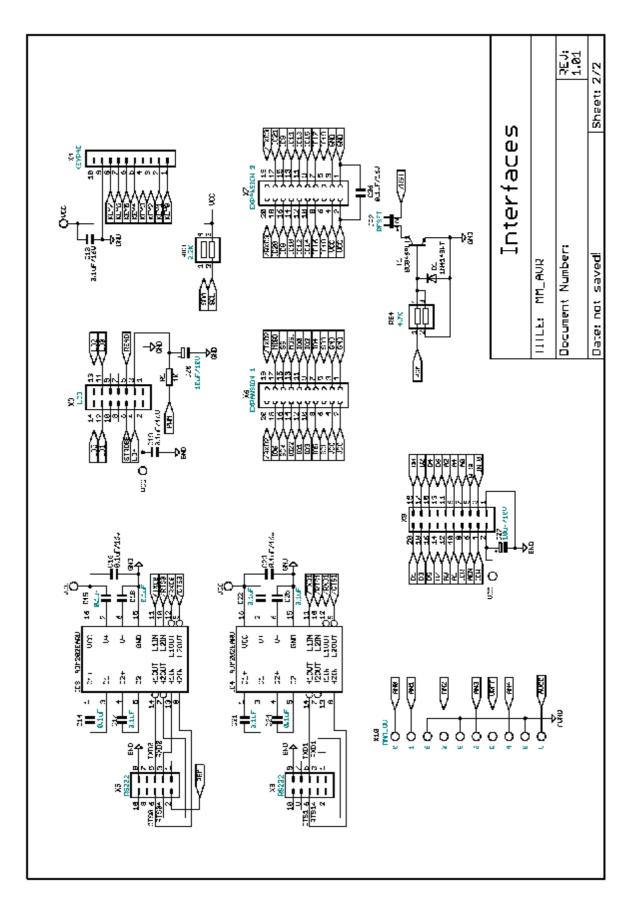





5V Analog Ground Analog In 4 Reference Analog In 3 Ground Analog In 2 Ground Analog In 1 Analog In 0




14


Port Pin Assignments using Arduino port naming convention:



**Power Jack** 

#### 6. Schematics



