

Micro C
8051 Assembly Language

Programming Guide

Date: May 3, 2010

Document Revision: 1.01

BiPOM Electronics

16301 Blue Ridge Road, Missouri City, Texas 77489
Telephone: 1-713-283-9970. Fax: 1-281-416-2806
E-mail: info@bipom.com
Web: www.bipom.com

© 2010 BiPOM Electronics, Inc. All Rights Reserved.
All trademarked names in this document are the property of respective owners.

mailto:info@bipom.com
http://www.bipom.com

Overview

Micro C 8051 Development System has a built in 8051 Assembler that allows developing
programs in assembly language or mixed C and assembly for project development and
educational purpose.

Assembly language can be embedded in C programs as inline assembly. Alternatively,
assembly language code may have its own source file. Micro C 8051 Development System
allows having multiple assembly source files or mixing assembly and C source files in the
same project.

Our 8051 Simulator and 8051 Debugger tools also support assembly language development.
For example, it is possible to single step through assembly code, set breakpoints and watch
register values. This simplifies assembly program development and is also a valuable
learning tool for users learning about microcontrollers.

Software Setup

Download Micro C 8051 Development System from:

http://www.bipom.com/8051dev.php

Open the zip file 8051dev.zip and install by running setup.exe.

A Welcome screen will appear:

Click on Next. End User Agreement will appear:

http://www.bipom.com/8051dev.php

Please read the agreement and click Yes if you wish to continue with installation. Click Yes
twice, once for Micro-IDE License and once for Micro C License.

Enter your name, company (if applicable) and serial number:

If you have already purchased license for Micro C 8051 Development System, please enter
your Serial Number in the Serial field. Otherwise, you can enter a serial number of 1 to run
the Micro C 8051 Development System in demo mode with reduced functionality.

Click Next. If you have entered a serial number of 1, you will be asked to confirm if you want
to run in demo mode:

Click Yes.

Select the disk location where the software will be installed. Using the default
location of c:\bipom\devtools is recommended:

Click Next. Select the Program Folder where the icons for Micro-IDE will be installed.
Default selection is Micro-IDE folder.

Click Next. Micro-IDE will be installed and you will see the progress:

When the installation is complete, you will be given an option to start Micro-IDE now:

Click Finish and Micro-IDE will start.

Downloading Example Programs

After installing the software, you can build assembly language programs and download
programs to the board. Follow the steps below:

1. Make sure the board is powered and connected to the PC as described in the section
Installing the Hardware.

2. Run Micro-IDE from Windows Start menu. When Micro-IDE is started, the Project selection
window appears:

Click OK to select an existing example project.

Micro-IDE is distributed with several example programs that illustrate how to program the
8051 micro-controller. Example projects are located under the Examples folder under the
folder where you installed Micro-IDE. Some of the examples are written in C and some of
them are written in assembly language.

Select Project, Open Project and open the example project asm.prj from:

C:\bipom\devtools\MicroC\Examples\8051\tiny\asm

4. Click the Build button on the main toolbar. This will build the asm project:

If the project builds successfully, you should see a message indicating no errors on the
Output Window:

5. Download the executable (asm.hex) file to the board by selecting Download under Build
menu:

If the MINI-MAX/51-C2 board is powered and connected properly to the PC, a progress dialog
will appear:

The progress dialog will disappear following a successful download. Details of the download
are
shown on the Output Window:

When the download is finished, the progress indicator disappears. This means that the board
has received the program successfully. After the program has been successful downloaded, it
can be started using the Mode button on the main Toolbar:

Mode button puts the board into Run or Program mode. In Run mode, the microcontroller is
executing the program in its memory. In Program mode, the microcontroller is in Reset state
so no programs are running. In Program mode, microcontroller’s flash memory can be
changed and a new program can be downloaded.

The Mode button is Red in Program mode and Green in Run mode. Following a download,
the Mode button will be Red. Click the Mode button to change the mode to Run mode. The
program asm.hex that you just downloaded starts executing.

You should now see the characters that you type on the Terminal window being echoed back
to you.

Congratulations!!! You have built and executed your first assembly language program
on the MINI-MAX/51.

Click the Mode button once again so it turns Red. The board is in Program mode

Writing Your Own Programs

To create your own project, select Project menu and select New Project. This will display the
New Project dialog:

Enter the name of the new project and its location (this examples uses test as the project
name and c:\test as the project location). Select the Toolkit as ASM51 Assembler for 8051-
8052. Click OK. Say Yes to create new directory and Yes to create new source file. The new
project with the name of test under c:\test will be created.

A blank assembly language file (test.asm) will be automatically created:

Type the following sentence into the section where it says “Put your code here”:

clr P1.0

Type the tab character before the line; otherwise, the assembler will complain. In Micro C,
assembly instructions cannot start on the first column so we need a tab.

The assembly program should now look like this:

This program changes port pin P1.0 to logic low level. P1.0 is connected to the Green LED on
the Training Board (TB-1) so this program will turn on the Green LED if TB-1 is installed. Build
the program by clicking the Build button. If the program builds successfully, you will see the
following messages on the Output Window:

Assembling c:\test\test.asm…
First pass… Second pass… 0 error(s).

Download the program to the board by clicking the Download button on the main toolbar.
Run the program by clicking the Mode button on the main toolbar. You will see the Green
LED on TB-1 turning on if TB-1 is connected.

Using the 8051 Simulator

BiPOM’s 8051 Simulator fully supports the 8051 Assembly language programs written in
Micro C. In the simulator, the 8051 instructions are simulated on the PC as if they are
executing on the target board.

You can simulate the micro-controller and single-step through your program without actually having the
board connected to your PC. The demo Simulator that comes with Micro-IDE is limited to 1K of 8051
code. You can purchase the 8051 Simulator option from BiPOM Electronics to remove this restriction
and obtain a full-featured Simulator license.

To start the simulation, press F11 or click the Step Into button on the Debug toolbar:

This will start a simulation session and will bring up the Listing file (test.lst) for this project. Listing file is
an Assembly language representation of your program with additional information. The execution will
stop on the first code line that will be highlighted:

Step Into

To view the simulated 8051 registers, activate the Register window (if it is not already visible) by
clicking the Register window button on the Window toolbar. To view the simulated 8051 memory, click
the Memory window button on the Window Toolbar:

All the standard 8051 registers are simulated and viewed on the Register window. To see the remainder of
the registers, scroll down the Register window. Note that at program startup, ports are all 0xFF, which
means that all the Port pins are high logic level.

Press F11 one more time. You will notice that the current execution line (green bar) has advanced to the
next line:

This means that the current line

clr P1.0

has already executed. In the Register window, Port1 will change from 0xFF to 0xFE indicating that bit 0 (
P1.0) has been reset.

If you continue to press F11, the execution will stay on the same line because AJMP $ statement generates
an infinite loop. To stop debugging, select Debug menu and select Stop Debugging. Or click the Stop
Debugging button:

When debugging is stopped, all debugging related windows such as Register window, Memory window and
Variable window are automatically closed.

You can obtain more detailed help on how to use Micro-IDE by selecting Help Topics and Help Pages on the
Web under the Help menu.

Stop

Page 16

Appendix A: 8051 Assembly Language Instructions

Transfer (Move) Instructions

Syntax:

MOV destination, source destination = source

There are 6 basic types:

Instruction Description
MOV A, byte Move byte to accumulator
MOV byte, A Move accumulator to byte
MOV Rn, byte Move byte to register of current bank
MOV direct, byte Move byte to internal RAM
MOV @Rn, byte Move byte to internal RAM with address contained in Rn
MOV DPTR, data16 Move 16-bit data into data pointer

Stack Instructions

Instruction Description
PUSH byte Increment stack pointer, move byte on stack
POP byte Move from stack to byte, decrement stack pointer

Exchange Instructions

Instruction Description
XCH A, byte Exchange accumulator and byte
XCHD A, byte Exchange low nibbles of accumulator and byte

Arithmetic Instructions

Instruction Description
ADD A, byte Add accumulator to byte, put result in accumulator
ADDC A, byte Add with carry
SUBB A, byte Subtract with borrow
INC A Increment accumulator
INC byte Increment byte in memory
INC DPTR Increment data pointer
DEC A Decrement accumulator
DEC byte Decrement byte in memory
MUL AB Multiply accumulator by b register
DIV AB Divide accumulator by b register
DAA Decimally adjust the accumulator

Page 17

Logic Instructions

Instruction Description
ANL A, byte AND accumulator with byte, put result in accumulator
ANL byte, A AND byte with accumulator, put result in byte
ANL byte, #constant AND byte with constant, put result in byte
ANL C, bit AND carry with bit, put result in carry
ORL A, byte OR accumulator with byte, put result in accumulator
ORL byte, A OR byte with accumulator, put result in byte
ORL byte, #constant OR byte with constant, put result in byte
ORL C, bit OR carry with bit, put result in carry
XRL A, byte XOR accumulator with byte, put result in accumulator
XRL byte, A XOR byte with accumulator, put result in byte
XRL byte, #constant XOR byte with constant, put result in byte

Bit Manipulation Instructions

Instruction Description
CLR A Clear all bits of accumulator
CLR byte Clear all bits of byte
CLR Rn Clear all bits of register in current bank
CLR @Ri Clear all bits of byte pointed to by register
CLR C Clear carry bit
CLR bit Clear a bit-addressable RAM location or SFR
RL A Rotate left accumulator
RLC A Rotate left accumulator through carry
RR A Rotate right accumulator
RRC A Rotate right accumulator through carry
SWAP A Swap the nibbles of accumulator
CPL C Complement carry bit
CPL bit Complement a bit-addressable RAM location or SFR
CPL A 2’s complement A
SETB C Set carry bit
SETB bit Set a bit-addressable RAM location or SFR

Page 18

Jump Instructions

Instruction Description
SJMP <relative addr> Short jump up to 127 bytes forward or 128 bytes back
LJMP <address 16> Long jump to a 16-bit address
AJMP <address 11> Absolute jump to within 2K of program memory
JMP @A + DPTR Long indexed jump

Conditional Jump Instructions

Instruction Description
JZ <relative addr> Jump if accumulator is zero
JNZ <relative addr> Jump if accumulator is non-zero
JC <relative addr> Jump if carry is set
JNC <relative addr> Jump if carry is cleared
JB <bit>, <rel addr> Jump if bit is set
JNB <bit>,<rel addr> Jump if bit is cleared
JBC <bit>, <rel addr> Jump if bit is set, clear bit
CJNE A, direct, <rel addr> Compare accumulator and memory, jump if not

equal
CJNE A, #data <rel addr> Compare accumulator and data, jump if not equal
CJNE Rn, #data <rel
addr>

Compare Rn and data, jump if not equal

CJNE @Rn, #data <rel
addr>

Compare data and the byte pointed to by Rn, jump
if not equal

DJNZ Rn, <rel addr> Decrement Rn and jump if not zero
DJNZ direct, <rel addr> Decrement memory and jump if not zero

Subroutine Instructions

Instruction Description
ACALL <address 11> Absolute call to within 2K of program memory
LCALL <address 16> Long call to a 16-bit address
RET Return from subroutine
RETI Return from interrupt

