
RIO-xxx
liminary - Subject to Change
Pre

Smart IO
Expansion Card
for Raspberry PI
Roboteq's RIO (Raspberry IO) is an intelligent I/O expansion
card that is designed to turn Raspberry PI into a powerful and
inexpensive embedded computer for robotics navigation,
unmanned vehicles, machine control, industrial & home auto-
mation and any other applications that need interfacing to the
real world.

RIO includes a 3A DC/DC converter that may be connected to a
8V to 30V DC supply, and generates the 5V needed by the PI
and the RIO cards. The 5V is also brought to the IO connectors
for powering external devices and sensors. The high input volt-
age range and high efficiency of the DC/DC converter allows
the RIO/RPI stack to be used in a wide range of battery pow-
ered, and transformer powered applications

The card features 8 Digital Outputs capable of driving resistive
loads such as lights, or inductive loads such as relay, solenoids
or motors up to 1A each at 40V. 13 inputs (9 on AHRS version)
are available and each can be individually configured as digital,
0-5V analog, or as pulse inputs. In the pulse mode, the inputs
can capture pulse width, frequency, duty cycle, or quadrature
encoder counts. Each input pin can also be configured as PWM
output for driving RC servos.

The card also includes a 32-bit ARM microcontroller for pro-
cessing and buffering the IO, and managing the communication
with the processor on the RPI module. The processor can be
configured to perform, on its own, a long list of conversion, cap-
ture, filtering, or conditioning on the IO so that the PI processor
is relieved of these functions. A simple and powerful Basic-like
programming language is built into the card and allows users to
write programs that process the I/O in real time.

RIO provides a standard RS232 interface for communication to
PCs and various peripherals. A TTL serial interface is provided
for communication to microcomputers without RS232 drivers,
such as Arduino. A CAN bus interface allows RIO to be a mas-
ter or slave in a CAN bus network that can be up to 1000m long

and contain up to 127 nodes. CAN bus also allows the simple
interfacing to Roboteq motor controllers.

RIO comes with drivers and function library for configuring and
accessing the I/O quickly and transparently: I/O appears as local
memory to the Raspberry.

The card uses a 40-pin automotive-grade connector type MX34
(JAE) with locking mechanism to ensure easy insertion and
removal while providing a most reliable connection.

RIO is available in a version with an AHRS (Attitude and Head-
ing Reference System (RIO-AHRS card), including 3 axis accel-
erometer, 3 axis gyroscope and 3 axis magnetometer.

The RIO card firmware can easily be updated in the field to take
advantage of new features as they become available.

Applications

• Robot navigation

• Unmanned air, land, sea and submarine vehicles

• Motion stabilization systems

• Automotive computers

• Industrial and Home automation

• Machine Control

• Movie/Stage props

• Automated Test Equipment

Features List

• 8V to 40V DCDC Converter. 5V 3A output for Raspberry
and external accessories

• 13 Inputs (9 on AHRS version) configurable as Analog, Dig-
ital, or Pulse

• 0-5V Analog inputs range, 12-bit resolution

• Pulse width, Duty Cycle or Frequency pulse capture
RIO Expansion Card Datasheet 1

• Pulse IO pins configurable as PWM for driving RC servos

• 8 Digital ouputs up to 1A each, 40V max

• Direct interfacing to Roboteq Magnetic Guide Sensor

• Standard RS232 port for interfacing to computers and
other peripherals

• TTL Serial port for communication to microcontroller
board without RS232 drivers (e.g. Arduino)

• CAN bus interface

• Status LED to indicate Raspberry to IO communication

• Optional AHRS with 3-axis Gyroscope, Accelerometer
and Magnetometer

• Optional RS485 interface

• High reliability, high density 40-pin automotive-grade
connector

• High performance on-board 32-bit ARM Cortex M3 pro-
cessor with FPU

• Linux Libraries with functions for accessing the I/O

• Built-in Programming Language for local processing of
I/O data in realtime. 50000 lines/s execution time

• Field upgradable firmware
2 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

Orderable Product References

TABLE 1.

Reference IO Communication AHRS

RIO-IO 13 Ana/Digital/Pulse input CAN, RS232, TTL serial No

RIO-AHRS 11 Ana/Digital/Pulse input CAN, RS232, TTL serial Yes

Block diagram of RIO I/O Processor Card
Block diagram of RIO I/O Processor Card
The diagram below shows the RIO processor card.

Board Connectors and LEDs

A
na

lo
g/

D
ig

ita
/P

ul
se

In
pu

t C
on

di
tio

ni
ng

CAN
Transceiver

RS232
Driver

D
ig

ita
l O

up
tu

t
D

riv
er

IO
Processor

M
X

34
 4

0-
pi

n
C

on
ne

ct
or

DC/DC
Converter

26-pin Raspberry PI I/O Header

8V to 30V
DC Input

Serial TTL or RS485
5V Out

5V

5V

3.3V
8

13

RS485
Driver

(optional)

RTC
(optional)

ARM Cortex M3 with FPU

3 Axis
Gyroscope

Accelerometer
Magnetometer

(RIO-AHRS Version)

FIGURE 1. RIO I/O Processor Card

GND

X

YZ 40-Pin
I/O
Connector

Header to RPI

Power

Power
Connector

Status LEDs

+8-30V

FIGURE 2. RIO board connectors and status LEDs
RIO Expansion Card Datasheet 3

I/O Connector
The card uses a 40 automotive-grade connector type MX34 made by JAE Electronics. Contacts are rated up to 3A
and can be fitted on AWG22-24 wires. This connector was selected for its superior reliability and high density,
allowing the largest amount of connections in the small space available on the board. Pins are easy to attach at
the end of wires and to insert into the connector shell. The cable/connector assembly can then conveniently be
inserted/removed in and out of the RIO cards. A lock tab make the connector undetachable accidentally from the
card.

User I/O Connector Pinout

Pin assignment is found in the table below.

TABLE 2.

Connector Pin Signal Type Description

1 GND Power Power Ground

2 CANL I/O CAN Low

3 TTL-TxD Output Serial TTL Output Data (Optional RS485 Out)

4 RS232-TxD Output RS232 Output Data

5 GND Power Power Ground

6 VBackup Power In Backup supply for RTC

7 DIN13 Output 0-5V Dig/Ana/Pulse input 13

8 AOUT2 Output 12-bit 0-3.3V Analog Output 2

9 AOUT1 Output 12-bit 0-3.3V Analog Output 1

10 GND Power Power Ground

11 DOUT8 Output 1A Digital Output 8

12 DOUT7 Output 1A Digital Output 7

13 DOUT6 Output 1A Digital Output 6

14 DOUT5 Output 1A Digital Output 5

15 GND Power Power Ground

16 DOUT4 Output 1A Digital Output 4

17 DOUT3 Output 1A Digital Output 3

18 DOUT2 Output 1A Digital Output 2

19 DOUT1 Output 1A Digital Output 1

20 GND Power Power Ground

21 5VDC 5V Output

22 CANH I/O CAN High

1

21

20

40

FIGURE 3. MX34 connector pin locations
4 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

I/O Connector
The connector is available from most major electronics parts distributors (Digikey, Newark, RS Components).

Note: The pin number marking on the RIO PCB is incorrect. Use the pin numbering as shown in Table 2 on
page 4. Pins numbers are also engraved on the plastic shell of the connector.

23 TTL-RxD Input Serial TTL Input Data (Optional RS485 In)

24 RS232-RxD Input RS232 Input Data

25 5VDC Power Out 5V Output

26 ADIN12 Input 0-5V Dig/Ana/Pulse input 12

27 ADIN11 Input 0-5V Dig/Ana/Pulse input 11

28 ADIN10 (1) Input 0-5V Dig/Ana/Pulse input 10 (1)

29 ADIN9 (1) Input 0-5V Dig/Ana/Pulse input 9 (1)

30 5VDC Power Out 5V Output

31 ADIN8 Input 0-5V Dig/Ana/Pulse input 8

32 ADIN7 Input 0-5V Dig/Ana/Pulse input 7

33 ADIN6 Input 0-5V Dig/Ana/Pulse input 6 - Encoder 3B

34 ADIN5 Input 0-5V Dig/Ana/Pulse input 5 - Encoder 3A

35 5VDC Power Out 5V Output

36 ADIN4 Input 0-5V Dig/Ana/Pulse input 4 - Encoder 2B

37 ADIN3 Input 0-5V Dig/Ana/Pulse input 3 - Encoder 2A

38 ADIN2 Input 0-5V Dig/Ana/Pulse input 2 - Encoder 1B

39 ADIN1 Input 0-5V Dig/Ana/Pulse input 1 - Encoder 1A

40 5VDC Power Out 5V Output

Note 1: Not available on AHRS version

TABLE 3.

Description Product Reference

Plastic housing MX34040SF1

Contact pins M34S75C4F2 or
M34S75C4F4

TABLE 2.

Connector Pin Signal Type Description
RIO Expansion Card Datasheet 5

Serial Port Connections
A serial connection to a PC is necessary in order to configure the RIO card using a Graphical User Interface. A
connection between the 40-pin connector and a DSub 9 pin connector must be done using 3 wires as shown in
the figure below.

Power Supply Connector
Power to the RIO Card is provided via a removable 2-pin connector with a standard profile and 5.08mm pin spac-
ing. The figure below shows the power supply polarity. Applying power to this input will generate the 5V for the
Raspberry and the RIO. Do not power the Raspberry through its USB connector when the RIO card is present.

The connector is available from these and other suppliers.

Power and Status LEDs
RIO plugs on top of the Raspberry using the 26-pin header/connectors present on both cards. RIO will turn on,
and the Power LED will lit, as soon as it is connected to a power supply. The card will also power the Raspberry
via the 26-pin header.

TABLE 4.

Manufacturer Product Reference

On Shore Technologies EDZ950/2

Molex 0395300002

Phoenix Contact 1757019

1

21

20

40

1 5

96

Signal RIO DSub9
GND 1 5
RxD 24 3
TxD 4 2

FIGURE 4. RS232 to MX34 connector wiring

+
-

FIGURE 5. RIO power supply polarity
6 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

I/O Connection
A Status LED will flash to indicate that the onboard processor is running. The flash rate is 1Hz until the RIO card
detects data exchange activity with the Raspberry, at which point the flashing rate will change to 4Hz. Data is con-
stantly being exchanged using a Linux daemon running in the background (See “I/O Exchange Daemon” on
page 12) and so the LED will flash as soon as the Raspberry has booted and for as long as the background com-
munication task is active. The X,Y, Z on the Figure 2 on page 3 are the orientation for the Gyroscope, Accelerome-
ter, and Magnetometer that are present on the AHRS version of the board.

I/O Connection
RIO has up to 13 inputs (11 on AHRS version) which can be used to capture digital, analog or pulse signals. Each
input has a 53kOhm pull down resistance, and a pull up output buffer for driving RC servos.

Digital Input Connection
The diagrams below show how to connect switches to the input. A DC voltage can also be applied and a logic 1
will be detected above 2.5V.

Analog/Pulse Input Connection
DC, Pulse or AC voltage sources can be applied directly to the input. Analog captures must be configured in Abso-
lute mode.

Potentiometers and other ratiometric sensors can use the 5V output available on the I/O connector. For best pre-
cision, capture must then be configured in Relative mode, to compensate fluctuations in the 5V output.

33kOhm

20kOhm

1kOhm

Ground

1K
to
10K

5V Out

DIN

1K
to
10K

FIGURE 6. Pull down and Pull up switch wiring

33kOhm

20kOhm

1kOhm

Ground

1K
to
10K

5V Out

DIN

FIGURE 7. Analog/Pulse and Potentiometer wiring
RIO Expansion Card Datasheet 7

RC Output Connection
All input pins can also be used to drive RC servos. The servos should be powered from an external voltage source
and only be connected to the RIO's 5V output if they consume little power. When powered from the RIO, insert a
500uF/10V capacitor or higher. RIOs output drive capability is limited and not all servos may be compatible with
the output signal. A pull down resistor at the pin may be required in some condition to make it work.

Note: RC Output mode is not yet implemented in version 1.0 of the firmware.

 Digital Output Connections
RIO’s 8 Digital Ouputs are Open Drain MOSFET outputs capable of driving over 1A at up to 40V. Since the outputs
are Open Drain, the output will be pulled to ground when activated. The load must therefore be connected to the
output at one end and to a positive voltage source (e.g. a battery) at the other. Inductive loads must have a diode
across the coil to prevent high voltage damage to the output driver.

Resistive and inductive loads can be connected simply as shown in the diagrams below.

33kOhm

20kOhm

1kOhm

Ground

5V Out

DIN

FIGURE 8. RC Servo wiring

Up to
24V
DC

DOUT Internal
Transistor

Lights, LEDs, or any other
non-inductive load

Ground

+

-

FIGURE 9. Connecting loads to DOUT pins

Up to
24V
DC

DOUT
Internal
Transistor

Relay, Valve
Motor, Solenoid
or other Inductive Load

Ground

+

-

8 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

Electrical Specifications
Electrical Specifications

Absolute Maximum Values

The values in the table below should never be exceeded, permanent damage to the card may result.

Power Stage Electrical Specifications

TABLE 5.

Parameter Measure point Min Typ Max Units

Power Supply Voltage Ground to Vin 35 Volts

Reverse Voltage on Battery Leads Ground to Vin 25 Volts

Digital Output Voltage Ground to Output pins 40 Volts

Analog and Digital Inputs Voltage Ground to any signal pin on 40-pin connector 15 Volts

RS232 I/O pins Voltage External voltage applied to Rx/Tx pins 15 Volts

Board Temperature Board -40 85 oC

Humidity Board 100 (1) %

Note 1: Non-condensing

TABLE 6.

Parameter Measure point Min Typ Max Units

Operating Voltage Ground to Vin 8 30 Volts

Operating Current Ground to Vin 50(1)(2) mA

5V Output Voltage Ground to 5V pins on 40-pin connector 4.6 4.75 4.9 Volts

5V Output Current 5V pins on 40-pin connector 1000 (3) mA

Digital Output Voltage Ground to Output pins 40 Volts

Digital Output Current Output pins, sink current 1 (4) Amps

Output On resistance Output pin to ground 0.75 1.5 Ohm

Output Short circuit threshold Output pin 1.05 1.4 1.75 Amps

Input Impedances ADIN Input to Ground 53 kOhm

Digital Input 0 Level Ground to Input pins -1 1 Volts

Digital Input 1 Level Ground to Input pins 3 15 Volts

Analog Input Range Ground to Input pins 0 5.1 Volts

Analog Input Precision Ground to Input pins 0.5 %

Analog Input Resolution Ground to Input pins 1 mV

Analog Output Range Ground to Input pins 0 3.3 Volts

Analog Input Resolution Ground to Input pins 12 bits

Pulse durations Pulse inputs 20000 10 us

Pulse repeat rate Pulse inputs 50 250 Hz

Pulse Capture Resolution Pulse inputs 1 us

Frequency Capture Pulse inputs 100 10000 Hz

Encoder count Internal -2.147 2.147 10^9
Counts

Encoder frequency Encoder input pins 1000 kHz
RIO Expansion Card Datasheet 9

Operating & Timing Specifications

Scripting

Note 1: Excluding RPI and without load at 5V Outputs

Note 2: At 12V supply. Current decreases as input voltage increases

Note 3: Sum of all 5VOut outputs

Note 4: Total average current on all outputs not to exceed 4.5A

TABLE 7.

Parameter Measure Point Min Typ Max Units

Command Latency Command to output change 1 0.5 1 ms

IO Update rate Internal 1000 Hz

RS232 baud rate Rx & Tx pins 115200 (1) Bits/s

Note 1: 115200, 8-bit, no parity, 1 stop bit, no flow control

TABLE 8.

Parameter Measure Point Min Typ Max Units

Scripting Flash Memory Internal 16384 Bytes

Max Basic Language programs Internal 2000 3000 Lines

Integer Variables Internal 1024 Words (1)

Boolean Variables Internal 1024 Symbols

Execution Speed Internal 50 000 100 000 Lines/s

Note 1: 32-bit words

TABLE 6.

Parameter Measure point Min Typ Max Units
10 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

Linux Software Installation
Linux Software Installation

Several software elements are necessary in order to use the RIO card:

• The rioboard.d daemon that ensures background data exchange between the RIO and the Raspberry

• Libraries of C calls to writing programs that access the I/O on the RIO

• The minicom terminal emulator program for configuring the RIO and performing firmware updates

• The most recent firmware file. It is highly recommended that you install the latest firmware

• A test program to immediately see the RIO in action

• Source code to all Linux software

All the element are installed using the simple procedure described below. This procedure applies to Raspberry
with the Rasbian OS distribution. You must have “root” privileged and be logged in as root to perform the installa-
tion.

Installing the RioBoard Software
To install the RioBoard software follow the steps listed below.

• Login to RaspberryPi with SSH or open the console if you are using the Raspberry GUI. Use an account
with “root” privileges. If no root password is set, use the following command to create one:
sudo passwd root

• Change the current directory to the home directory of the user. To do so issue command
cd ~

• Download the install script with the following command:
wget http://roboteq.com/riofiles/rio_board_install.sh

• If you do not have the “wget” program install it with the following command first:
apt-get install wget

• After you have successfully downloaded the install script, change the file attributes to make it executable:
chmod 755 rio_board_install.sh

• Run the installation script by typing
./rio_board_install.sh

After the installation is complete, the board will automatically reboot. You can easily verify that the installation was
successful and that the RIO and RPI are communicating by looking at the flashing rate of the Status LED on RIO.
It will be flashing at a rapid 4Hz rate when operational.

Installed Files Locations
Most of the files are loaded into the “/rioboard” directory. Shared libraries needed by RioBoard daemon are cop-
ied to “/usr/local/lib”. Daemon binary is copied in “/usr/sbin”. Daemon startup script is copied in “/etc/init.d”.

Testing RIO
A precompiled test program is installed by the script in /rioboard. From within this directory, make the test pro-
gram executable with chmod 755 rioboard_test.

Run the program by typing ./rioboard_test

The test program will display the values captured on the RIO input pins and the data from the Gyroscope, Accel-
erometer and Magnetometer (AHRS version).

The test program uses several functions from RioBoard library and is a good basis for writing your own custom
application.
RIO Expansion Card Datasheet 11

Writing and Building Applications
To use the RioBoard library in your applications, include the RioBoard.h header file in your program and set the
linker to link against librioboard.a.

The “/riofiles/raspio-src” directory contains source files of the test program, the library and the makefile to build
it. The source files of the daemon can also be found in that directory.

The list of all available library functions and their short description can be found in ”/riofiles/raspio-src/Rio-

Board.h“. Function parameters explain the usage of every individual function.

The only prerequisite for the library usage is that before using any functions the user application should call Rio-
Init() and check the returned result.

Note that the library is not thread-safe and can't be used by several processes at the same time.

I/O Exchange Daemon
In a typical control and automation application, Inputs are read often and periodically and Outputs also need to be
updated frequently. To handle I/O efficiently, the Raspberry can read the state of the inputs and change outputs
on the RIO using a mirror memory architecture shown in the figure below.

Because SPI bus is relatively slow, rather than actually writing and reading the IO directly on the RIO, Raspberry
programs change the value in a section of the local memory. Likewise, the IO processor then updates the Output
pins with the memory image data, and puts the state of the inputs in the memory.

A daemon running in the background then continuously synchronizes the content of the RPI memory to the mirror
memory in the RIO so that both contain the same image. The two memory segments are synchronized every
1ms using Direct Memory Access, burdening very little both processors.

Using this technique, user programs are not slowed down for I/O access. However a delay of up to 2ms (1ms
average) will be present from the time the program changes the state of an output, and the time the change is on
the RIO output pin. Likewise, when reading the state of an input, the value that is returned by the function may be
up to 2ms old (1ms average).

If some IO need lower latency, they can be processed directly on the RIO card using the programs written in
MicroBasic.

The deamon verifies that the RIO card is present and functional. A function is provided for reading the result of
that check. If an input is read while the RIO card is not detected by the daemon, the function will return the value
0. RIO also checks that the daemon periodically refreshes the mirror memory. The Status LED will flash at a fast
4Hz rate when this activity is detected. When the deamon is not running, the flashing rate drops to 1Hz.

IO Mirror Image Memory

IO Mirror Image Memory

SPI Sync
Daemon

IO
Interface

IO Processing

Library
User

Application

FIGURE 10. Mirror I/O Architecture
12 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

Linux Software Installation
Start/Stop the RioBoard Daemon
Normally, the daemon starts automatically at OS boot time. In case it is necessary to start/stop the daemon man-
ually use the following commands:

service rioboard_d start

service rioboard_d stop

Serial Log Disabling
In the default Linux image, the Raspberry serial port is used by the OS allowing users to login over serial port.
During system boot, the boot log is also sent to the serial port for monitoring.

Since the serial port is needed for many of the RIO functions (e.g. configuration and firmware updates), these
serial port activities must be disabled. The install script takes care of this and you will not be able to use the serial
port for login or boot logs observations.

Fetching the Latest RIO Firmware
The latest firmware release can be obtained from the Roboteq web site using the following shell command:

wget http://roboteq.com/riofiles/raspioF3-update.zip

Unzip the firmware with the following command:

unzip raspioF3-update.zip

A .bin file will be extracted in the current directory. This file can then be loaded in the RIO from the Raspberry or
from a PC running the RIO PC Configuration Utility.

Update Firmware via the Raspberry
New firmware can be installed into the RIO using the following steps:

• Launch the minicom terminal emulator with the proper preconfigured settings by typing
riocom

• Once minicom is running, change the settings for adding line feeds at the end of received strings by typing
Ctrl-a a

• Issue the ?FID query to verify that the RIO is present and communicating. RIO will reply with the firmware
ID, date and RIO board type (AHRS or basic).

Example: ?FID

FID=Roboteq v1.2 RIOAHRS 09/18/2013

• Issue the ?FUPD 321654987 query to enter the firmware update mode. RIO will display IAP followed by
the C character, repeating every second. The repeating C indicates that RIO is awaiting the update file.

• Type Ctrl-a s to enter the file send mode and select ymodem. Navigate to the firmware file (e.g.
RaspioF3-update-090913.bin).

The firmware will then be transferred to the RIO and run immediately upon transfer completion.
RIO Expansion Card Datasheet 13

C Library Functions
The following functions are provided for reading and writing I/O data.

Serial Communication between RIO and Raspberry
Another communication mechanism using the RPI serial port is provided for the exchange of non periodic data,
such as configuration parameters and strings. Since the Raspberry's serial port is a supported device by the Oper-
ating System, it can be readily used by any program that accesses the serial port, such as the minicom terminal
emulator. User programs can be written using the standard library for opening and read/writing in the serial port.

The diagram below shows the various parts of the RIO that are accessible via the Raspberry's serial interface.

TABLE 9.

Function Description

signed short RioReadPulseAnaInputs(unsigned char ch) Read the value of an analog or pulse input

unsigned short RioReadAllDigitalInputs() Read all digital inputs into a single 32bit value

bool RioReadDigitalInput(unsigned char ch) Read the state of a single digital input channel

RioWriteAnaOutput(unsigned char ch, signed short value) Write analog output channel

void RioWriteAllDigitalOutputs(unsigned long value) Write all digital outputs with a single u32 word

void RioSetDigitalOutput(unsigned char ch) Set a single output line

void RioResetDigitalOutput(unsigned char ch) Clear a single digital output line

void RioWritePWMOutput (unsigned char val, unsigned short ch) Set a PWM output channel with a value

signed short RioReadGyro(unsigned char ch) Read the Gyroscope values on the X, Y or Z axis
(ch = 0, 1, or 2)

signed short RioReadAccel(unsigned char ch) Read the Accelerometer values on the X, Y or Z axis
(ch = 0, 1, or 2)

signed short RioReadMag(unsigned char ch) Read the Magnetometer values on the X, Y or Z axis
(ch = 0, 1, or 2)

float GetAngle(unsigned char ch) Read the AHRS Euler Angles output values on the
Roll, Pitch or Yaw axis (ch = 0, 1, or 2)

unsigned char RioReadStatus(void) Read the RIO Status flags

bool RioIsPresent(void) Returns 1 if RIO is detected and operational

RIO Processor Raspberry Processor

User
Application

UART

CAN

UART

UART

UART

MicroBasic
Programs

/dev/ttyAMA0

CAN Bus

TTL or
RS485

RS232

Config
EEPROM

Updatable
Firmware

FIGURE 11. Serial Communication between RIO and Raspberry Pi
14 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

AHRS
Reading/Setting Configuration and Accessing I/O
The serial communication can be used to read and change the many configuration and operating parameters of
the RIO. It can also be used to read and write I/O data although the mirrored I/O memory provides a more effi-
cient mechanism. A set of console commands are available for this purpose and described in the serial com-
mands section of this document.

AHRS
The RIO-AHRS is equipped with a 3-axis Accelerometer, Gyroscope and Magnetometer. A special algorithm
“fuses” the data of each of these sensors to give the board’s Attitude and Heading. The board’s Pitch, Roll and
Yaw angles is given using Euler angles or Quaternions. Figure below shows the angles relative to the board hard-
ware.

The data of each individual sensor, and the AHRS output can be read by the Raspberry PI using library of functions
for this purpose. The data can also be processed by the MCU on board RIO using the MicroBasic language.

Sensor Monitoring with PC Utility
The value of each sensor can be plotted in real time using the supplied PC utility. The utility’s chart recorder has
six tracks, each of which can be assigned to a sensor output. Sensor data can be saved in a log for later analysis.

The AHRS Pitch, Roll and Yaw data is used to animate a 3D figure that, with proper calibration, will move on the
screen the same way as the board is moved. The AHRS output angles can also be plotted and logged in the 2D
chart.

Sensor Calibration
The sensor must be calibrated before using it for the first time. For the magnetometer in particular, the calibration
must be done in the actual place where the board will be used, in order to take into account the possible distor-
tion to the magnetic field induced that the surrounding hardware. Calibration is done using the PC utility in the
Setup tab, in two steps.

Gyro Z

Gyro Y
Pitch

Gyro X
Roll

Yaw
+

+

+

-

-

-

Accel X
Mag X

Accel Z
Mag Z

Accel Y
Mag Y

Accel Z
Mag Z

Accel X
Mag X

FIGURE 12. Sensors and AHRS references
RIO Expansion Card Datasheet 15

The Gyroscope zero offset must first be calibrated. This is done by leaving the RIO on a surface (in any position)
and make sure it does not move. Click then the Gyroscope Calibration button. The offset will be measured and
stored into the RIO’s EEPROM. You can verify that the calibration was successful by monitoring the Gyroscope
data in the chart recorder. A small amount of noise (approx. +/- 20) will show in the chart instead of 100 or more
for an uncalibrated gyroscope.

The AHRS calibration process requires that the sensor be rotated in every direction, in every angle, for approxi-
mately one minute. The rotation must be made while keeping the board in the same location in space, i.e. not
moved laterally, up or down). The collected data is then analyzed to automatically determine a couple of dozen
parameters needed by the AHRS fusion algorithm to work correctly. A button is provided on the setup screen of
the PC utility. It must be pressed only after gyroscope calibration. Once pressed, the utility will prompt you on
what to do next. At the end of the process, the new calibration values are stored in RIO’s RAM and are effective
immediately. You must click on Save to Device for the calibration to be stored in the RIO’s EEPROM and then
automatically reloaded every time the board is powered up.

Using the PC Utility
A powerful utility is available for download from Roboteq's web site for setting up, monitoring and performing
maintenance functions. While RIO is delivered ready to use right off the box, it contains many parameters that can
easily be changed using user-friendly menus. The utility can be used for testing and troubleshooting, for performing
field updates of the RIO firmware and for editing and running scripts.

FIGURE 13. RIO PC Configuration Utility

RIO

Setup

AHRS Realtime 3D View

Real Time Gyroscope and Accelerometer Values Chart

Data Logger
16 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

MicroBasic Scripting
MicroBasic Scripting
The RIO features the ability for the user to write programs that are permanently saved into, and run from the
card’s Flash Memory. This capability is the equivalent of combining the functionality of a PLC or Single Board
Computer directly into the expansion card. The language is a very simple, yet powerful language that resembles
Basic. Scripts can be simple or elaborate, and can be used for various purposes. Language description and refer-
ence can be found on the Roboteq web site.

Command Reference Summary
RIO accepts a number of commands via its serial port for reading operational data, sending commands, setting
configuration, and performing maintenance. Commands can be sent from any port: Raspberry COM port, RS232,
TTL Serial and are processed as they arrive.

Real Time Queries
These are commands for reading RIO data. They begin with the question mark character. Table 10 shows the list
of supported queries.

Each time a query is executed, it is stored in a history buffer and may therefore be automatically repeated at a
periodic rate using the # character with the following syntax:

repeat last query in queue
nn repeat last queries ever nn ms. Example: # 100 to execute one query from the history queue every 100ms
C clear queue

TABLE 10.

Query Arguments Description

AI [InputNbr] Read Analog Inputs

AIC [InputNbr] Read Analog Inputs Converted

B [VarNbr] Read User Boolean Variable

C [Channel] Read Absolute Encoder Count

CAN [Channel] Read Raw CAN Message

CF [Channel] Read Raw CAN Received Frames Count

D [InputNbr] Read All Digital Inputs

DI [InputNbr] Read Individual Digital Inputs

DO none Read Current Digital Outputs

EO [Channel] Read AHRS Degrees Output

FID none Read Firmware ID String

MA [Channel] Read AHRS Q Out

MBB [VarNumber] Read Microbasic Integer Variable

MBV [VarNumber] Read Microbasic Boolean Variable

MG [Channel] Read MEMS Gyroscope

MGD none Read Magsensor Track Detect

MGM [Channel] Read Magsensor Markers

MGS none Read Magsensor Status

MGT [Channel] Read Magsensor Track Position

ML [Channel] Read all MEMS

MM none Read Magnetometer
RIO Expansion Card Datasheet 17

Real Time Commands
These are commands used to instruct RIO to do something. They begin with the exclamation mark character.
Table 11 shows the list of supported commands

Configuration Commands
These commands are used to read or modify the configuration parameters. They begin with the ~ character for
reading and the ^ character for writing. Table 12 shows the list of supported configuration commands. However, it
is easier and preferable to use the PC utility menus for inspecting and changing configurations. If changing manu-

PI [InputNbr] Read Pulse Inputs

PIC [InputNbr] Read Pulse Inputs Converted

QO [Channel] Read AHRS Quaternion Output

RF none Read Raspberry Flags

RP none Read Raspberry Present

RTS none Read Raspberry Time Stamp

SVI [VarNumber] Read RIO to RPI User Variable

SVO [VarNumber] Read RPI to RIO User Variable

T none Read IC Temperatures

TM [Channel] Read Time

TRN none Read Power Unit Tree filename

V none Read 5V output

VAR [VarNumber] Read User Integer Variable

TABLE 11.

Command Arguments Description

AO Value

B Value Set User Boolean Variable

C Channel Counter Set Encoder Counters

CG Channel Command Set Motor Command via CAN

CS Var number Value Send Raw CAN frame

D0 BitNumber Reset Individual Digital Out bits

D1 BitNumber Set Individual Digital Out bits

DS Value Set all Digital Out bits

EES None Save Config to Flash

R Option Run MicroBasic Script

RC Channel RCPulse Set RC Pulse Out

SVI Value Set RIO to RPI User Variable

SVO Value Set RPI to RIO User Variable

VAR Value Set User Variable

TABLE 10.

Query Arguments Description
18 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

Command Reference Summary
ally, remember to save the new configuration to flash with the %EESAV. Otherwise, RIO will revert to the previ-
ously active configuration next time it is powered on.

TABLE 12.

Command Argument Default Description

ACTR InputNbr 2500 Analog Center

ADB InputNbr 5% Deadband

ALIN InputNbr Linear Analog Linearity

AMAX InputNbr 5000 Analog Max

AMIN InputNbr 0 Analog Min

AMOD InputNbr Absolute Analog Input Mode

AOS none ADInput Source of Analog Output value

APOL InputNbr Direct Analog Input Polarity

BRUN none Disabled MicroBasic Auto Start

CBR none 250Kbit/s CAN Bit Rate

CEN none Disabled CAN Mode Select

CHB none 100ms CAN HeartBeat

CLSN none 0 CAN Listening COB

CNOD none 1 CAN Node Address

CSRT none 0 CAN SendRate

DINL InputNbr Direct Digital Input Active Level

DOL InputNbr Direct Digital Output Level

DOS none RPI Digital Output Source

ECHOF none Echo On Disable/Enabe RS232 & USB Echo

EE Address 0 User EE Storage

EQS none Euler Euler or Quaternion

INS Channel ADinput Digital Input Source

PCTR InputNbr 1500 (us) Pulse Center

PDB InputNbr 5% 5% Pulse Deadband

PLIN InputNbr Linear Pulse Linearity

PMAX InputNbr 2000 (us) Pulse Max

PMIN InputNbr 1000 (us) Pulse Min

PMOD InputNbr RC Pulse Pulse Input Mode

POS none RPI Pulse Output Source

PPOL InputNbr Direct Pulse Input Polarity

RSBR none 115200 Set RS232 bit rate

SCRO none Last Used Select Print output port for scripting
RIO Expansion Card Datasheet 19

Maintenance Commands
These commands are used to perform maintenance functions. They begin with the % character. Table 13 shows
the list of supported configuration commands.

TABLE 13.

Command Arguments Description

CLRST Key 321654987 Load Factory default configs

CLSAV Key 321654987 Calibration values to EEPROM

EELD Load Parameters from EEPROM

EERST Key 321654987 Restore Factory Defaults

EESAV Save Parameters to EEPROM

FUPD Key 321654987 Enter Firmware Update Mode

GREF Sets Gyro 0 Ref

RESET Reset Controller

RTEST Enter SPI test mode

SLD Load Minibasic scripts

STIME Number of seconds since 1/1/2000 Set Time

YREF Sets Yaw 0 Ref
20 RIO Expansion Card Datasheet Version 1.0. September 20, 2013

	Smart IO Expansion Card for Raspberry PI
	Orderable Product References
	Block diagram of RIO I/O Processor Card
	Board Connectors and LEDs
	I/O Connector
	User I/O Connector Pinout

	Serial Port Connections
	Power Supply Connector
	Power and Status LEDs

	I/O Connection
	Digital Input Connection
	Analog/Pulse Input Connection
	RC Output Connection
	Digital Output Connections

	Electrical Specifications
	Absolute Maximum Values
	Power Stage Electrical Specifications
	Operating & Timing Specifications
	Scripting

	Linux Software Installation
	Installing the RioBoard Software
	Installed Files Locations
	Testing RIO
	Writing and Building Applications
	I/O Exchange Daemon
	Start/Stop the RioBoard Daemon
	Serial Log Disabling
	Fetching the Latest RIO Firmware
	Update Firmware via the Raspberry

	C Library Functions
	Serial Communication between RIO and Raspberry
	Reading/Setting Configuration and Accessing I/O

	AHRS
	Sensor Monitoring with PC Utility
	Sensor Calibration

	Using the PC Utility
	MicroBasic Scripting
	Command Reference Summary
	Real Time Queries
	Real Time Commands
	Configuration Commands
	Maintenance Commands

