Electromagnetic Braking System

Name: William Gaskey, Sandip Mistry, Duy Nguyen, Jee Yoon Team No.: 4 Course/Section: ELET4308/12652 Instructor: Dr. Farrokh Attarzadeh University of Houston College of Technology

Outline

- Executive Summary
- Product Requirements
- Design Alternatives
- Design Specifications
- Design Description
- Construction Details
- Costs
- Conclusions
- Questions & Comments

Executive Summary

- Objective: Design an electromagnetic braking system
 - Replacing the conventional braking system
 - Less cost with greater performance
 - No need for maintenance and/or replacement
- Research: Other types of electromagnetic braking system
 - Electromagnetic braking system with brake pads
 - Eddy-current braking system

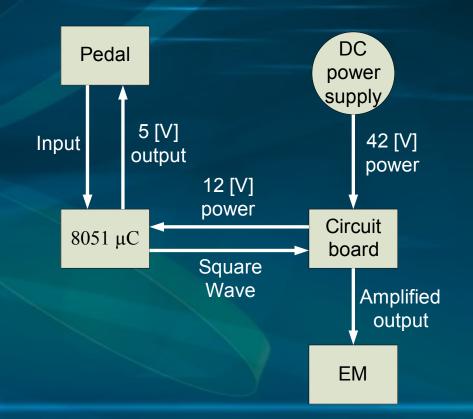
Product Requirements

- Overall
 - Power supply to power the system
 - Hub and spindle assembly to simulate the actual spinning of the rotor
 - Custom made rotor with metal arranged for the most effective result
 - Brake pedal to simulate the real environment
 - Three electromagnets to generate braking force

Product Requirements (cont'd)

- Hardware and Software
 - 8051 microcontroller
 - Reading the braking level from pedal
 - Varying the braking force through duty cycle
 - Custom built circuit board
 - Regulating input voltage
 - Powering up the 8051 μC
 - Amplifying the output voltage to electromagnets

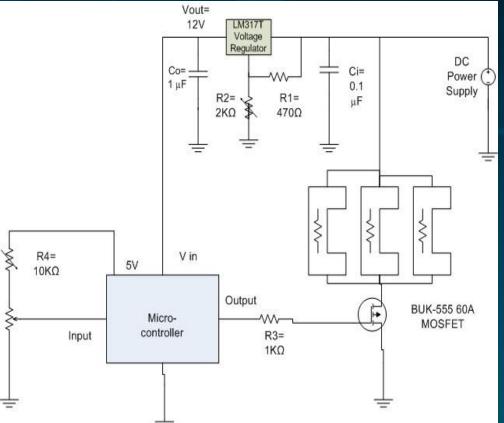
Design Alternatives


- Permanent magnets mounted on the wheel
 - Cleaning issue
 - Magnet arrangement issue
 - Electromagnetic field around other mechanical components issue
- Metallic material region all around the wheel
 - Electromagnetic field dispersion issue
 - Not enough braking force

Design Specifications

- Mini-Max 51-C2 8051 Microcontroller
- 2001 Toyota Corolla hub and spindle assembly
- Three GP-2030/24VDC electromagnets
- MC2 Microcon pedals

Design Specifications (cont'd)

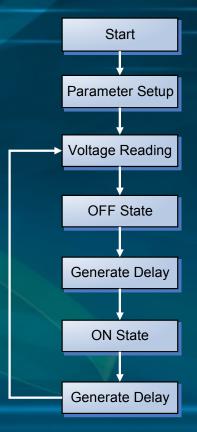

- General view
 - Pedal
 - 8015 Microcontroller
 - Circuit board
 - Electromagnets
 - DC power supply

Design Description

- Circuit board
 - LM317T voltage regulator to regulate input voltage
 - BUK-555 60A
 MOSFET as a switch

Drawing-1. Electromagnetic Brake System Circuit Diagram

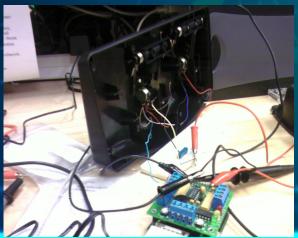
Team 4


R5=

10KΩ

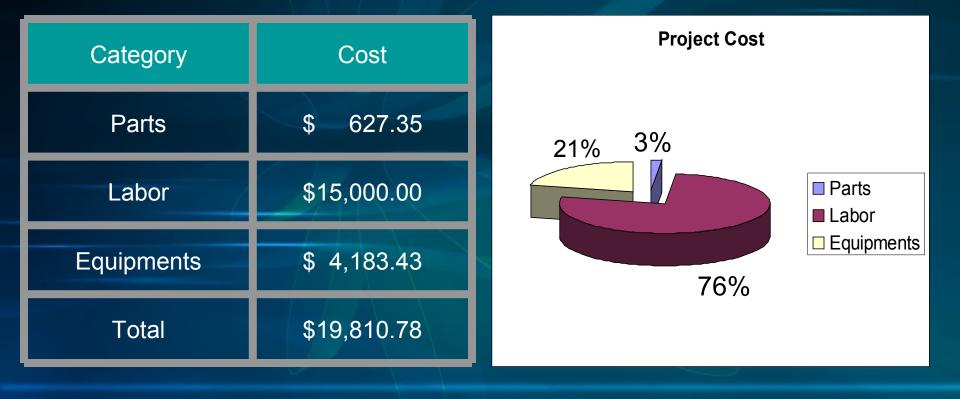
Slide 8 of 13

Design Description


- Programming
 - Voltage reading by ADC
 - ADC by convert() function
 - ON and OFF state by setbit() and clrbit()
 - Generate delay by generate_delay() function

Slide 9 of 13

Construction Details



ELET 4308

Slide 10 of 13

Team 4

Slide 11 of 13

Conclusions

- Project was completed on schedule and within budget thanks to donations
- Supplier issues caused the purchase of weaker magnets than intended for design
- Good results with current design, a larger budget would improve performance
- The project proves the theory and shows the potential for a full functional system

Questions & Comments

