# L.A.W.N. Mower (Local Area Wireless Network) 

## Team 8

## Micah Feusse

Ebrahim Ghazali Kristin Koteras Mohammad Lodhi


## Motivation

ㅁ To design an alternative to lawn mowing for

- Physically impaired
- Recreational purpose
- Entertainment
- Local Area Wireless Network achieves
- Simplicity in design
- Inexpensive alternative
- User friendly


## Objectives

- Design remotely operated lawn mower for everyday use
$\square$ Mimic video game
- Uses a Graphical User Interface on laptop for simplicity and familiarity



## Operation

$\square$ Master and slave computers initialize to each other

- Slave computer establishes connection with microcontroller
$\square$ Master computer controls GUI running on slave computer
$\square$ Microcontroller receives commands and activates motor at desired speed
$\square$ Web cam sends video through slave computer to master computer


## Design

- Lawnmower
- 8051 Microcontroller Controls motor speed and direction
- 2 gear box motors drive the system
- On board laptop links user to microcontroller through remote desktop
- Laptop, microcontroller, and batteries mounted on wooden frame


## Design (continued)

- Slave Computer

- Receives commands from master computer and relays information to microcontroller through GUI
- Wireless network cards allow computers to communicate
- Web camera sends visual feedback to master computer through slave computer


## Hardware Block Diagram



## Software

$\square$ GUI

- Programmed in Visual C++
- Restricted buttons control movement and speed
- Microcontroller
- Hex code provided by BiPOM as server
 interface


## Software Flowchart



## Software BiPOM API Flowchart

- BiPOM API converts language of choice into a code compatible with microcontroller
- Physical link is required for particular program


## Schedule - Project Completed



ELET 4308

## Cost Analysis

- Cost of all parts - \$364.81
- Labor Costs - \$26,400
- \$30/hour
- Ebrahim and Micah = 225 hours

- 225*\$30 = \$6,750 each
- Kristin and Mohammad $=215$ hours
- 215*\$30 = \$6,450 each
- Total Cost - \$26,764.81


## Verification

- Motors
- Endurance testing involved motors running at full speed until batteries depleted
- Ran 6 hours without diminishing performance, indicating batteries last longer than necessary
$\square$ Turning radius
- Approximately 12 feet for $360^{\circ}$
- Reaction time
- Mower responds 0.1 seconds after user input
- Video
- Approximate 1 second delay
- Range
- Depends on router (40 to 100ft for basic router)


## Prototype



- Controlled wirelessly through network
- Video observation through web cam
- Steering is controlled using individual motors
- Loss of connectivity disables motors as failsafe


## Questions?



