UNIVERSITY OF HOUSTON COLLEGE OF TECHNOLOGY DEPARTMENT OF ENGINEERING TECHNOLOGY COMPUTER ENGINEERING TECHNOLOGY PROGRAM ELET 4308/4208

Senior Project Final Presentation SMART JACK

Fall 2006 November 30, 2006

Team # 1
Team Members:

Project Advisor:

Dr. Farrokh Attarzadeh

Areeb Tanvir
Christopher Johnson
Dustin Washington
Nnaemeka Onuba
Timothy Marinos

Presentation Outline

- Introduction
- Background
- Product Requirements
- Design Alternatives
- Design Specifications
- Design Construction
- Costs Analysis
- Conclusion

Timothy Marinos

Dustin Washington

Nnaemeka Onuba

Areeb Tanvir

Christopher Johnson

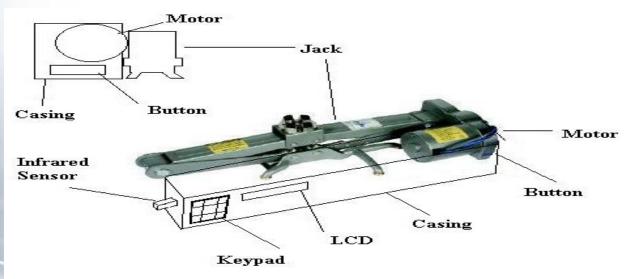
Areeb Tanvir

Introduction

- Objective
 - To implement a jack that is fully automated with a two button system.
- How does the Smart Jack work?
 - Uses one button to ascend and another to descend
 - Has infrared sensor to indicate when the lifting motion will stop
 - Uses 8051 microcontroller to synchronize all of the components together within the programming code
- Society will benefit from the Smart Jack
 - Anyone will be able to change their tire
 - Two button solution makes the process simple
 - Infrared signal indicates when it is safe to remove the tire

Background

- Motivation
 - Changes in industry direction
 - Feasibility
 - Practicality
- Applications and Benefit
 - Simple and easy to use
 - Affordable
 - safe

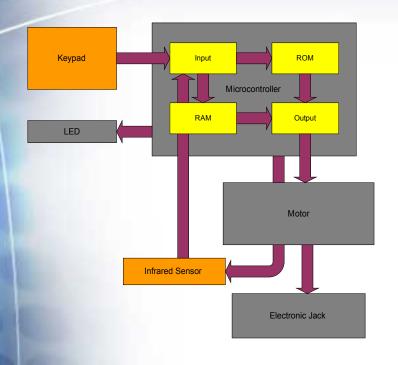


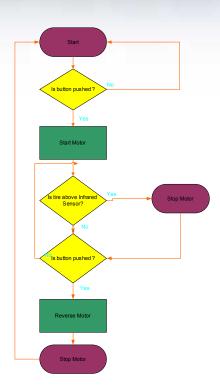
Product Requirements

- Hardware
 - 12 V DC power supply (battery)
 - Heavy duty 10-amp motor
 - Infrared proximity sensor
 - LK202-25 LCD display
 - Mini Max 8051 microcontroller
 - Steel car jack frame
 - Metal Casing (for microcontroller, LCD, and keypad)
 - Keypad
- Software
 - Micro C
- Target Cost
 - Production
 - Retail

Design Alternatives -Previous Design-

- Design of the Jack at the time of the proposal
- Jack was built into the box
- Button was separate from the keypad

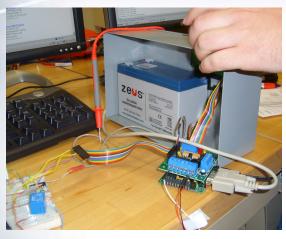



Design Alternatives (cont.) -Current Design-

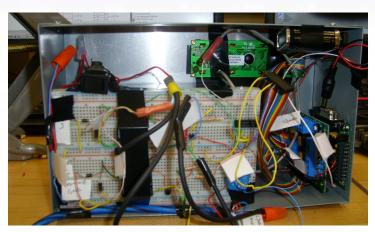
- Casing is separate from the Jack
- Controls are housed on the casing
- Addition of a kill switch

Design Specifications

Hardware Flowchart


Software Flowchart

ELET 4308 Team 1: SMART JACK 8


Design Specifications (cont.)

- Jack must lift 2 tons (~4000lbs) max
- Sensor must detect
- Maximum power rating
- Maximum weight of assembly

Design Construction

ELET 4308 Team 1: SMART JACK 10

Cost Analysis

Parts	Estimated Cost	
Metal Case	\$21.64	
8051 Microcontroller, LCD, Keypad	\$169.00	
IR Sensor (2x)	\$24.36 (\$12.18 ea.)	
12V DC Battery	\$16.50	
Electric Jack w/motor	\$64.99	
IR Sensor Cable (2x)	\$7.89 (\$3.99 ea.)	
9 V Battery	\$5.00	
Jack to 9V Clip	\$1.50	
Lab equipment	Donated	
Breadboard	\$6.00	
Single pole Bidirectional Relay (2x)	\$5.00 (2.50 ea.)	
4 and Dual input Gate	\$1.25	
Diodes and Resistors	Donated	
TOTAL	\$323.13	

Cost Analysis (cont.)

Labor	Hrs/week	Pay rate 30/hr.@ 17wks	Total price
5 people	14 hrs/wk	\$7,140.00	\$ 35,700.00
Amount per person each week	\$1,050	\$1,050	\$ 5,250.00
Tools cost	\$ 125.99	\$ 125.99	\$ 125.99
Material Costs	\$ 159.99	\$ 159.99	\$ 159.99
Service	\$ 120.00	\$ 120.00	\$ 120.00
Grand Total			\$ 41,355. 98

Conclusion

- Problems and Solutions
 - The nature of the GP2D15 IR Sensor provided a weak signal for its application
 - This factor causes a glitch in the lifting and descending processes of the jack

The team resorted to using the sensor because of time and monetary constraints

Future design suggestions for the Smart Jack

- Design a smaller box utilizing a smaller 12V battery
- Make the box either wireless or attached to the jack itself
- Use a more powerful and expensive IR sensor