University of Houston College of Technology Department of Engineering Technology Computer Engineering Technology Program

ELET 4308/4108 Senior Project Presentation

Robotic Bulldozer

Spring 2006 April 27, 2006

Team 12

Project Advisor: Dr. Farrokh Attarzadeh

Team Members: John Artis Richard Cole Duong Nguyen

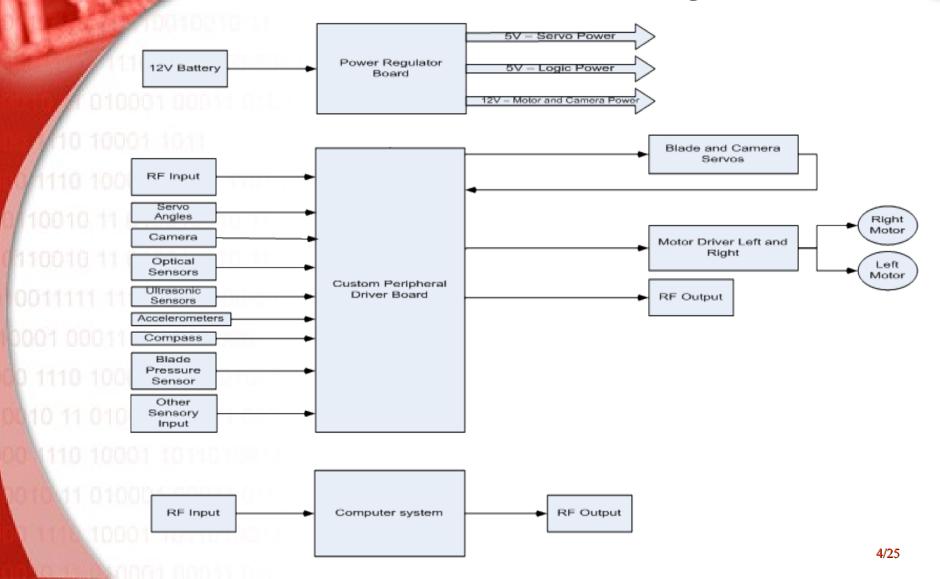
Introduction

Create A Microcontroller-Based Robotic Bulldozer

Autonomous Control Leveling & Surveying Capabilities Wireless Communications One Operator, Multiple Units Universal System User-Friendly More Efficient Safe

Technical Features

Main System:


System performs a set of specified tasks

Uses Artificial Intelligence (AI)

Distance Elevation Modules (DEM)

Preprogrammed instructions to accomplish tasks

Block Schematic Diagram

Blade System

- Blade leveling sensors
 Mechanical motion & range of the servos to:
- 10010 11 0 ≻01 Lift
- 10010 11 0 ≻ 1 Tilt
- 0011111 111 🔪 🛛 Angle adjustment
 - ••• Automatically controlled 6-Way
 - Earth moving
 - Digging ditches
 - > Trenches
 - ▶ Finish work

Ground Line

Concrete Level

2.2 in. (55 mm) sinale arouser heid

www.deere.com

N Cut Reach

Cast Reach

Width Over Track

Track System

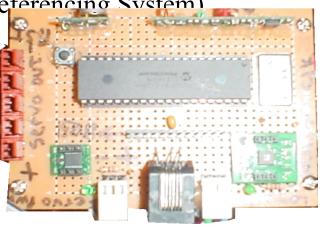
(2) Tracks
 Independent Drives

Modified from a toy Track Hoe

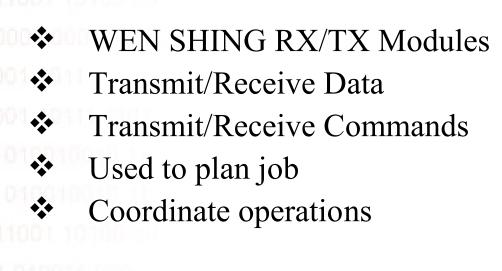
Electronically controlled differential
 steering system

Maneuvers the weight & movement ability over different terrains

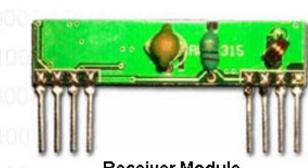
Control Circuitry

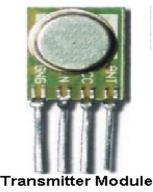

I/O Control Board

Dual-Sided Custom Circuit Board

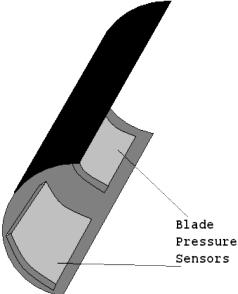

- PIC16F877 Microcontroller
 - (2) Motor Driver Circuits
 - (1) Compass
 - (2) 5V @ 3A Regulators for Logic & Servos
- 3-Axis Accelerometer (Inertia Referencing System)
- RF TX/RX Modules

Functions


- Used for AI
- Controls the motors and servos
- Interfaces all devices

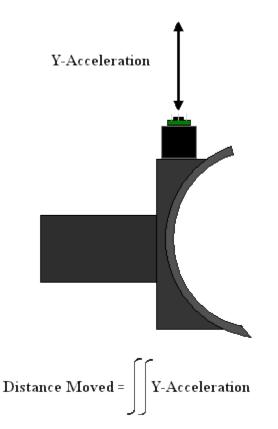

RF Communications

Receiver Module



Collision Detection/Avoidance & Distance Measuring System

- SHARP GP2D12 infrared distance measuring sensors
- Obstacle avoidance detection
- 100 🛠 11 0 Distance and elevation measurements
- Navigation assistance

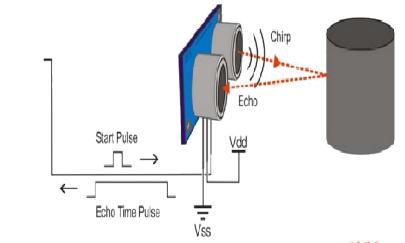

Tactile Blade Pressure Sensors

- Constructed out of antistatic foam
- Senses differential pressures on left & right sides of the blade
- Used to know if and where blade is in contact with the dirt
- 00111111 111001 10100 (1) 0001 00011 010011 0200 0 1110 10001 101110100 10 11 010001 00011 01 0 1011 010001 00011 01 0 1011 010001 00011 01 0 1010 10001 1011010011

Accelerometer

Blade accelerometer is used to determine the vertical distance that the blade has traveled.

Scanning Vision System

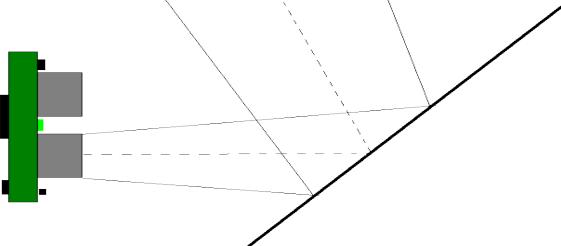

Equipped with a servo-controlled camera Ultrasonic Sensor for near terrain mapping Remote-control override capability Used to perform a visual systems check

Near Terrain Scanning Elevation Mapping System

Uses the Parallax "Ping" Ultrasonic Sensor

11 2000 Sensors used to measure distances to terrain

Ability to detect high/low spots in the immediate vicinity
 Locate and determine the shape of the dirt



Work In Progress

Ping Sensor

Does not return echo due to critical angle on flat surfaces.

Work is under way to find a more reliable sensing device for terrain mapping.

Work in Progress Cont.

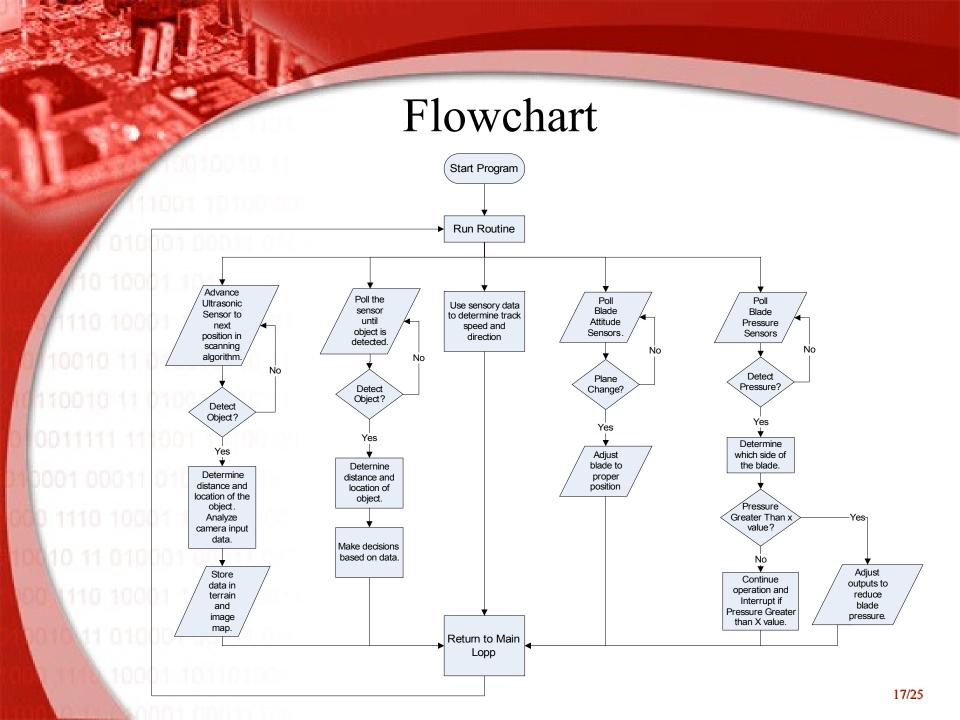
The following systems are still under development:

Wireless Communications System

Remote Supervisory Computer Application

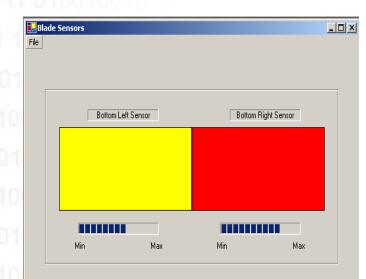
Future Goals

 Plans to include the Laser-Based Systems for Grading and Excavating produced by (Spectra Precision Laser) for automatically keeping the Blade at Grade Level.


10010 11 010010010 10 10010 11 010010010 11

* How it works

A laser receiver is mounted above the cutting edge of the blade. The Spectra Precision Laser CB25 control box and a hydraulic installation kit are tied into the machine's hydraulic system. Grade information from a rotating laser is processed and automatically directs the machine's hydraulics to maintain the blade elevation.



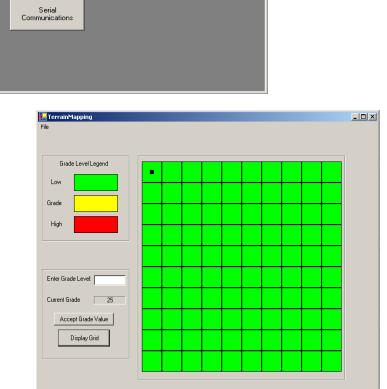
Remote Application

111001 10100 0 1 010001 00011 0 10 10001 1011 1110 10001 10111 10010 11 010010010 10

🖳 Control Center

Distance

Proximity


Blade Pressure

Track Speed

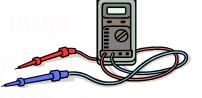
Terrain Mapping

Blade

File

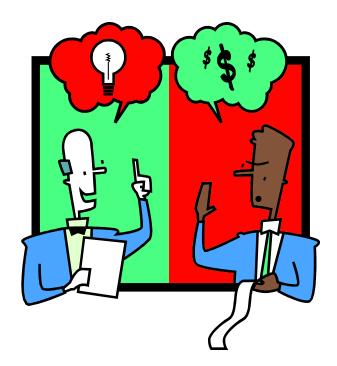
Camera

Marketing Data


- Safety Issues
 - Reduce occupation-related injuries
 - Reduce risk for accidents
 - Reduce the number of fatalities
- Cost Factors
 - An average cost of a typical bulldozer ranges from \$10K to \$200K depending on its quality; in comparison, this system ranges from the hundreds to a thousand
 - Over \$100,000 could be saved annually due to the reduction in operating hours, equipment, and labor costs
- Potential Markets
 - Industries (Farming, Construction), NASA, Hazardous material cleanup, Toys, etc.
 - Advantages
 - Use of a microcontroller-based control to reduce the time, cost, and increase the efficiency
 - Single operator to control multiple bulldozers

Cost Analysis

*** Parts Cost** (Table 1.1)


Equipments Cost (Table 1.2)

* Labor Cost (Table 1.3)

Parts Cost

Table 1.1 Parts Cost							
Item No.	Parts	Source	Quantity	Actual Cost			
1	Toy Track Hoe	Toys R Us	1	\$ 51.9			
2	Project Box	Radio Shack	1	10.9			
3	DC Gear Head Motors	ACE Electronics	2	29.9			
4	Servos	M&M Hobby Center	4	150.6			
5	12V Battery	EPO	2	23.9			
6	HB-25 Motor Controllers	Parallax	1	99.9			
7	Circuit board Kits	Radio Shack	2	100.0			
8	8051 Microcontroller	BiPOM	1	75.0			
9	Diodes/IC	Jameco, EPO	3	39.7			
10	Transistors	Radio Shack	4	8.5			
11	Camera/Wireless Kit	EPO	1	107.9			
12	HITACHI HM55B Compass Module	Parallax	1	29.9			
13	SHARP GP2D12 Sensors and Cables	Parallax	1	83.7			
14	HITACHI H48C Tri-Axis Accelerometer	Parallax	1	39.0			
15	Ultrasonic Sensor	Parallax	1	24.9			
16	Transmitter Kit	EPO	2	20.9			
17	Assortment of Parts	Bering, Home Depot, Michaels, El	PO N/A	89.			
1011010			Totals:	\$986.1			

Equipments Cost

a cashi airi	Table 1.2							
1010	Item No.	Parts	Quantity	Actual Cost				
10 100	01 1011	Digital Multimeter (DMM)	1	Donated				
1110 100 10010 11	2	Oscilloscope	1	Donated				
10010	3	Dremel Tool	1	Donated				
	04 101	Drill	1	Donated				
	5	Soldering Iron	1	Donated				
	6	Heat gun	1	Donated				
(110 100	7	Wire Stripper/Cutter	1	Donated				
	8	Tools (wrench, screwdrivers, ect.)	1 set	Donated				
				22/25				

Labor Cost

01	No.	Project Tasks	No. of Labors	Wages	Hours per Week	No. of Weeks	Total Cost
		Planning & Designing	3	\$25.00	20	3	\$4,500.00
	2	Mechanical Assembly	2	\$25.00	20	2	\$2,000.00
	3	Electrical Assembly	2	\$25.00	20	2	\$2,000.00
	4	Programming	3	\$25.00	20	5	\$7,500.00
	0051	Test & Debug	3	\$25.00	20	3	\$4,500.00
					Total:	15	\$20,500.00

01 010001 000 | 1 0 ! .

References

United States Patent Office. <<u>www.uspto.gov</u>> Caterpillar. <<u>www.cat.com</u>> Electronic Parts Outlet. <<u>www.epo-houston.com</u>> CSAO. <<u>www.csao.org</u>> M&M Hobby. <<u>www.mmhobby.com</u>> John Deere. <<u>www.deere.com</u>> Kobel. <<u>www.kobelcoamerica.com</u>> Bobcat. <<u>www.bobcat.com</u>> Spectra Precision Laser. <<u>www.trimble.com/spectra</u>> Marks, Nadine. "Health Risks For Heavy Equipment Operators". <www.csao.org/UploadFiles/Magazine/Vol9No3/93health.htm>

Questions

