An Automatic Solar Panel Protection System

#### Section 1 Product Overview

#### presented by John Seiver

-diff. Internal

What is the Solar Panel Protector ? The Solar Panel Protector or SPP is:

- ✤ a fully-automated
- self-contained
- **\*** solar panel protection system that will:
  - ✓ continually protect solar panel installations
  - ✓ with a minimum of expense
  - ✓ and a minimum of maintenance

Why a Solar Panel Protector ?

Solar panels are vulnerable to hail

A solar panel is a solar cell enclosed in a metal frame with a glass cover

During extreme weather conditions, the moderately impact-resistant glass cover will fail



How does the SPP work ?

 the SPP detects severe weather using the NOAA SAME weather radio broadcasting system

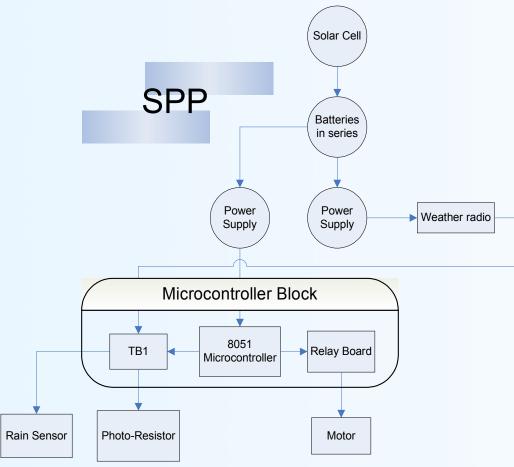


- Photo resistor monitors light conditions
- NASA designed rain sensor monitors rain fall



- Variation & Testing
  - Set values for light conditions
  - Weather radio triggering
  - Rain triggering
  - Motor system timing
- Full system test
  - Test light and weather radio gate triggering
  - Gate remains closed while in rain conditions
  - Motor timings

- The Solar Panel Protector detects severe weather using NOAA's SAME radio warning technology
- The Solar Panel Protector closes when it is dark
- The Solar Panel Protector is self-power; requiring no external energy use
- The Solar Panel Protector requires no regular maintenance


#### Why a Solar Panel Protector?

- reduces moisture buildup by eliminating the complete enclosed construction design
- allows the use of tougher materials for the SPP panel
- allows more light by eliminating the permanent glass covering



- <u>Construction Overview</u>
  - Construction Stages
    - Framing
    - Protective Panel Installation
    - Equipment Installation
    - Final Testing and Adjustments

#### **Hardware Design Description**



11

#### Construction Overview Framing the SPP



#### Construction Overview Framing the SPP

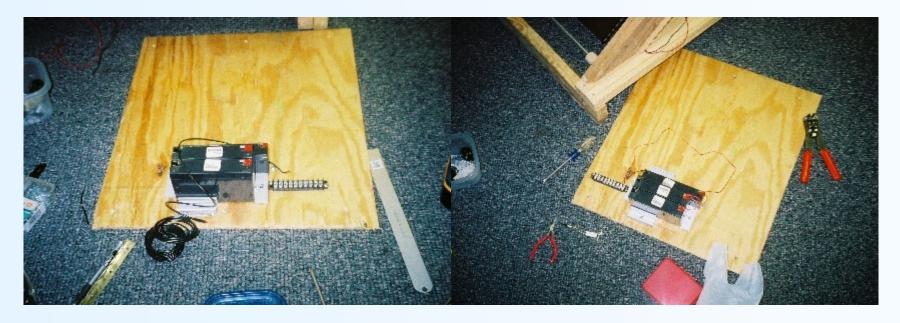


#### Construction Overview Framing the SPP



#### **Construction Overview**

#### **Protective Panel Installation**




#### **Construction Overview**

#### **Protective Panel Installation**



#### Construction Overview Equipment Installation



#### Construction Overview Equipment Installation



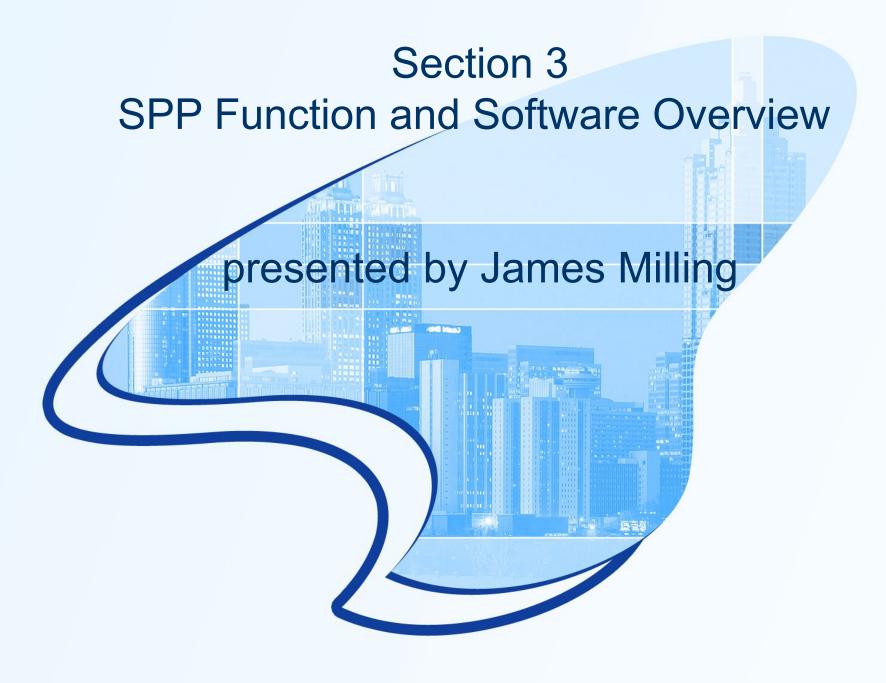
#### **Construction Overview**

#### **Final Testing and Adjustments**



#### **Construction Overview**

#### **Final Testing and Adjustments**




#### **Construction Overview**

#### **Final Testing and Adjustments**



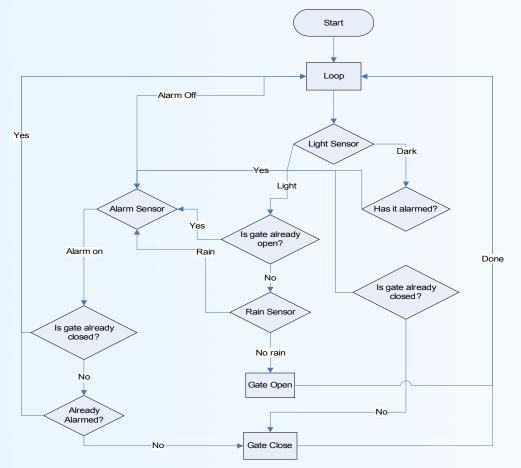
| Parts Total Cost              |                      |            |          |       | Labor Total Cost |                            |  |             |
|-------------------------------|----------------------|------------|----------|-------|------------------|----------------------------|--|-------------|
| Bipom products                |                      | Total Cost |          | Names | Hours Work       | Labor Cost at \$25 an hour |  |             |
|                               | 8051 Microcontroller |            | \$69.00  |       | Justin           | 478                        |  | \$11,850.00 |
|                               | TB-1                 |            | \$39.00  |       | John             | 527                        |  | \$13,000.00 |
|                               | RELAY-2              |            | \$29.00  |       | James            | 562                        |  | \$14,025.00 |
|                               | LCD242               |            | \$29.00  |       | Total            | 1567                       |  | \$38,875.00 |
| Batteries                     |                      |            |          |       |                  |                            |  |             |
|                               | 12 volt              |            | \$12.00  |       | Total Cost       |                            |  | \$39,087.00 |
|                               | 6 volt               |            | \$11.00  |       |                  |                            |  |             |
|                               | 6 volt               |            | \$11.00  |       | Cost to Un       | iversity                   |  | \$200.00    |
| Total                         |                      |            | \$200.00 |       | University saves |                            |  | \$150.00    |
| <b>Donated P</b>              | art Cost             |            |          |       |                  |                            |  |             |
| solar panel                   |                      | \$60.00    | \$0.00   |       |                  |                            |  |             |
| Wood                          |                      | \$20.00    | \$0.00   |       |                  |                            |  |             |
| <b>Cabinet line</b>           | r                    | \$7.00     | \$0.00   |       |                  |                            |  |             |
| Weather radio                 |                      | \$55.00    | \$0.00   |       |                  |                            |  |             |
| Gear syster                   | n                    | \$12.00    | \$0.00   |       |                  |                            |  |             |
| Power Strip                   |                      | \$6.00     | \$0.00   |       |                  |                            |  |             |
|                               |                      |            | \$0.00   |       |                  |                            |  |             |
| Cost of Donated Parts \$160.0 |                      | \$160.00   | \$0.00   |       |                  |                            |  | 22          |
|                               |                      |            |          |       |                  |                            |  |             |



- SPP Function Overview
  - Continually monitors the NOAA SAME broadcast
  - Closes the protective panel when severe weather is detected
  - Closes the protective panel when darkness is detected as a backup in the event of SAME system failure

**Design Alternatives** 

- Crop protection
- Roof protection
- User settings for light and other weather conditions


- Hardware Component Testing
  - Sensor Testing
    - Light tests for photo resistor
    - ✓ Water tests for rain sensor
    - ✓ Voltage output test for weather radio

**Prototype Product Requirements:** 

- weather radio to monitor severe weather
- microcontroller-based gating system
- Source the second se
  - ✓ Rain sensor
  - Photo resistor

- Software
  - Timing control for motor
  - Sensor calibration
  - Relay activation

#### **Software Design Description**



29





