

Cylinder Oven An Exploration and Application in Design

Senior Project ELET 4208 Project Group Spring 2009 Team 12

Represent By:

Jimmy Nguyen Zhuo Wang Kevin Aigbedion

Ideal Specialty Gas and Analytical Services [ISGAS]

- Chemical company located in Houston that specializes in Calibrated standards
- Company provides analytical services for a wide range of chemicals
- Developed Gas Chromatography methods data for selected standards
- Modified Gas Chromatography instruments to analyze specific liquid or gas standards

Cylinder Oven

- The cylinder oven is used to clean any impurities that may have been left behind in various types of chemical cylinders. The cylinder oven is also used to sulfur prep cylinders that are to be used for Sulfur mixes.
 - Cylinder oven may be set to any specific range of required temperature
 - Has pulling Vacuum capabilities
 - Cylinder oven is able to coat interiors of cylinders for sulfur mixes with layers of sulfur to keep the sulfur within the mix
 - Purging abilities with pure Nitrogen gas.

Objectives

- Increasing efficient labor and production on the cylinder oven
- Reducing human errors and discrepancies
- Accurate timing and sensory functions
 - Elimination of production cost resulting in human errors

- Current Cylinder Oven
 - Is operated manually by a trained Technician/Operator
 - Each process must be stopped and started by technician that controls the solenoid manually
 - Oven temperature is not automatically controlled, must be monitor at all times
- New Improvements
 - Each process for prepping the cylinder is automatically controlled by the user setting on the microcontroller
 - Sensor are installed to monitor pressure and temperature settings
 - Automated solenoid valve controlled

ISGAS Oven Procedures

Sulfur Cylinder Prep Procedure

- Place cylinders in the oven and attach Stainless Steel CGA fittings
- Close the oven and turn all heaters on
- Turn on vacuum and let oven get up to temp. (100F 110F)
- Purge and vacuum with Nitrogen 4 times.
- □ Fill with 100 psi of Pickle mix. (Replaced with Nitrogen)
- Close all cylinders turn off oven, open doors, and rapidly cool cylinders.
 - The pickle mix must sit in cylinder overnight, then vent.
- Purge and vacuum with Nitrogen two more times.
- Take cylinders out of oven and roll them behind the oven.

Current State of program

Introduction
Menu
Stage 1
Stage 2
Emergency Shutdown

ISGAS Design

ISGAS cylinder oven

Sulfur cylinder with regulator set at 100 psi with needle valve

Top portion of the oven with stainless steel lines with quicker neck connection

Solenoids with manual and timer control

Components Requirements

□ Microcontroller / LCD Pressure sensor Temperature sensor Solenoids □ 12 volt battery Modified Power strip Heating gun □ Vacuum pump □ Air compressor

Construction Materials

- □ 3/4 inch thick plywood
- Radiant Barrier insulation
- Metal structure frames
- □ Wheels
- Copper coil pipes
- Gauge
- Hatch lock
- Brass Fittings
- Hinges
- Screws
- Handle
- Locking mechanism

Components and Construction Material Costs

<u>ltems</u>	<u>Quantity</u>	<u>Price</u>		
Construction Material				
Plywood	6	\$52.47		
Metal frames	1	\$18.97		
1/4 inch steel/copper coil piping	1	\$28.97		
Quicker-neck valve Connector	0	TBD		
Valve gauge	1	\$11.27		
1/4 fittings and adaptors	20	\$66.74		
Radiant barrier Insulation material	1	\$21.99		
Handles	1	\$1.29		
Hinges	4	\$4.76		
Weather Strip	1	\$4.48		
Wheels	8	\$21.59		
Hardwares				
Vacuum pump	1	ISGAS LOAN		
Cylinder	1	ISGAS LOAN		
Cylinder stand	1	\$4.99		
Air Vent	1	\$12.88		
Air compressor	1	ISGAS LOAN		
Electronic Components				
Microcontroller	1	\$63.00		
Thermal sensor	1	\$3.90		
Pressure sensor	1	\$80.00		
Surge protector	1	\$5.39		
Solenoid valves	1	\$80.00		
Heater components	1	\$59.99		
Wires	2	TBD		
Automative relay switch	1	\$24.99		
BiPom Relay microcontroller addon	1	\$24.99		
Totals		\$592.66		

Financial Cost

Estimation:

Components/Construction Materials - \$592.66
 Lab Expenses - \$436.50
 Labor Costs - \$51,162.50
 Total Estimation - \$52,191.66

icros	oft Pro	oject - Senior_Project_Fall_2008_and_Spring_2009_Full(4-22-09)						
<u>F</u> ile	<u>E</u> dit	View Insert Format Iools Project Report Collaborate Window	Help				Type a que	stion for help
1		🛱 💁 🐡 🛦 🗈 🖺 🏈 🔊 - 🗞 - 🧶 ∞ 👾 🗰 🚍 🌄 🕇	🚰 💰 No G	roup 🔹 🗍	२ २ 🤯 । 🤅)	Show ▼ Tahoma ▼ 9	• в.
						- · · · ·		1 ¹ 00
	0	lask Name	Duration	Start	Finish	Predecessors 7	22 1 8 15 22 29 5 12 19 26	3 10 17 2
107	\checkmark	Test and install solenoid behind the oven	1 day	Tue 3/10/09	Tue 3/10/09	9 106	team 12	
108	\checkmark	Test the 8051 microcontroller's components	1 day	Wed 3/11/09	Wed 3/11/09	9 107	Team 12	
109	\checkmark	Prepare power point presentation	1 day	Thu 3/12/09	Thu 3/12/09	9 108	Team 12	
110	\checkmark	Review over presentation material	1 day	Fri 3/13/09	Fri 3/13/09	9 109	jimmy Nguyen,Zhuo W	ang
111	\checkmark	Spring Break	5 days	Mon 3/16/09	Fri 3/20/09	9 110	–	
112	\checkmark	⊟ Week 9	4 days	1on 3/23/09	Thu 3/26/09		**	
113	\checkmark	Pick up heating element, relay and temperature sensor	1 day	Mon 3/23/09	Mon 3/23/09	9 111	jimmy Nguyen,Zhu	Jo Wang
114	\checkmark	Begin Programming	1 day	Tue 3/24/09	Tue 3/24/09	9 113	Team 12	
115	\checkmark	Design circuit	1 day	Wed 3/25/09	Wed 3/25/09	0 114	team 12	
116	\checkmark	Test heating element and temperature sensor	1 day	Thu 3/26/09	Thu 3/26/09	9 115	FTeam 12	
117	\checkmark	Week 10	4 days	1on 3/30/09	Thu 4/2/09	l	T	
118	\checkmark	Research on circuit design	2 days	Mon 3/30/09	Tue 3/31/09	9 116	Team 12	
119	\checkmark	Implement circuit design	1 day	Wed 4/1/09	Wed 4/1/09	9 118	Team 12	
120	\checkmark	Continue programming	1 day	Thu 4/2/09	Thu 4/2/09	9 119	FTeam 12	
121	\checkmark	Week 11	4 days	Mon 4/6/09	Thu 4/9/09	l		
122	\checkmark	Intergating the circuit and testing	1 day	Mon 4/6/09	Mon 4/6/09	9 120	Team 12	
123	\checkmark	Continue with program	1 day	Tue 4/7/09	Tue 4/7/09	122	Team 12	
124	\checkmark	Pressure test the copper lines for leaks	1 day	Wed 4/8/09	Wed 4/8/09	9 123	Team 12	
125	\checkmark	Oven heat test	1 day	Thu 4/9/09	Thu 4/9/09	9 124	FTeam 12	
126	\checkmark	Week 12	4 days	1on 4/13/09	Thu 4/16/09			
127	\checkmark	Final check on all components	1 day	Mon 4/13/09	Mon 4/13/09	9 125	Team 12	1
128	\checkmark	Interfacing Temperature and Pressure Sensor	1 day	Tue 4/14/09	Tue 4/14/09	9 127	team 12	2
129	\checkmark	Integrate all components and hardware	1 day	Wed 4/15/09	Wed 4/15/09	9 128	Team 1	2
130	\checkmark	Pretest program	1 day	Thu 4/16/09	Thu 4/16/09	9 129	FTeam 1	1 2
131	\checkmark	E Week 13	5 days	1on 4/20/09	Fri 4/24/09			
132	\checkmark	Install oven door and weather strip	1 day	Mon 4/20/09	Mon 4/20/09	130	Team	12
133	\checkmark	Install air ventilation	1 day	Tue 4/21/09	Tue 4/21/09	132	tean 🔓	n 12
134	\checkmark	Implement and test temperature code	1 day	Wed 4/22/09	Wed 4/22/09	133	tear h	n 12
135	\checkmark	Program and implement pressure sensor	2 days	Thu 4/23/09	Fri 4/24/09	9 134	🖶 Tea	im 12
136		E Week 14	4 days	1on 4/27/09	Thu 4/30/09		T	
137	√	Testing phase and verfiying	1 day	Mon 4/27/09	Mon 4/27/09	135	t Te	am 12
138	√	Work on final report	1 day	Tue 4/28/09	Tue 4/28/09	137	l l l l l l l l l l l l l l l l l l l	eam 12
139	\checkmark	Work on final presentation	1 day	Wed 4/29/09	Wed 4/29/09	138	- L - L - L - L - L - L - L - L - L - L	eam 12
140		Final Project Presentation	1 day	Thu 4/30/09	Thu 4/30/09	139	h h	leam 12
141	-	□ week 15	1 day	Mon 5/4/09	Mon 5/4/09			
142		Final Report Due	1 day	Mon 5/4/09	Mon 5/4/09	9 140		Team 12
143		End of semseter	0 days	Tue 5/5/09	Tue 5/5/09	142	•	≱ 5/5

References

Ceodeux Inc. 2007. 1 November 2008
www.ceodeux.com
Omega Inc. 2003-2007. 1 November 2008
www.omega.com
Davis Instruments.2008.1 October 2008
www.davis.com
Catalina Cylinders. 2008. 1October 2008

Thank You!

Jimmy Nguyen Zhuo Wang Kevin Aigbedion

Jimmy.V.Nguyen@mail.uh.edu wangzhuoccna@gmail.com kevin.aigbedion@gmail.com

